www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Verknüpfung Konvex/Konkav
Verknüpfung Konvex/Konkav < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verknüpfung Konvex/Konkav: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:44 Mo 17.01.2011
Autor: Masseltof

Aufgabe
Gegeben sind die beiden konvexen Funktionen [mm] $f_1\, [/mm] : [mm] \; \mathbb{R} \rightarrow \mathbb{R}$ [/mm] und [mm] $f_2\, [/mm] : [mm] \; \mathbb{R} \rightarrow \mathbb{R}$. [/mm]

Entscheiden Sie, ob die folgenden Verknüpfungen der Funktionen wieder konvex sind.

[mm] $f_1 [/mm] + [mm] f_2 \qquad$ [/mm] ist  

[mm] $f_1 \cdot f_2 \qquad\qquad$ [/mm] ist  

[mm] $\frac{f_1}{f_2} \qquad\qquad\qquad\qquad$ [/mm] ist  

[mm] $f_1 \circ f_2 \qquad$ [/mm] ist

a)konvex
b)konkav
c)nichts


Hallo.

Ich soll die beschriebene Aufgabe lösen und hab nicht viele Ideen, wie ich da rangehen soll.

Um zu beweisen, dass die Möglichkeiten nicht konkav oder konvex sind, würde ja ein Gegenbeispiel reichen.

Wie soll ich aber beweisen, dass sie es sind.

Meine einzige Idee bisher ist, dass [mm] f_{1}\circf_{2} [/mm] konvex ist.
Unter Annahme das [mm] f_{1} [/mm] konvex ist, gilt [mm] f_{1}\circf_{2}=f_{1}(f_{2}) [/mm]
Damit gilt [mm] f_{1}(z). [/mm] Da [mm] f_{1} [/mm] konvex ist, ist es egal welche Variable man betrachtet. Die Funktion bleib konvex.

Wäre das plausibel?

Könntet ihr mir Tips (bitte keine Lösungen!) für die anderen Beispiele geben.

Viele Grüße und danke im Voraus.

        
Bezug
Verknüpfung Konvex/Konkav: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:23 Di 18.01.2011
Autor: Masseltof

Hallo.

Lösung dieser Aufgabe ist, dass a) konvex ist.

Der Rest ist nicht konvex.
Als Gegenbeispiel soll [mm] x^2*e^-x [/mm] irren, bzw. [mm] \bruch{x^2}{e^{-x}}. [/mm]
Ferner ist auch d nicht konvex, da bspw. [mm] x^2 [/mm] und [mm] e^{-x} [/mm] so verkettet werden, dass eben keine konvexe Funktion mehr vorliegt.

d) wundert mich da, da ich gerade nich sehe wie aus [mm] f_{2}(f_{1}) [/mm] eine nicht konvexe Funktion entstehen soll.
Immerhin ist [mm] f_{1}=y [/mm] und somit unabhängige Variable von [mm] f_{1}, [/mm] was wiederum konvex ist.

Viele Grüße

Bezug
        
Bezug
Verknüpfung Konvex/Konkav: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:22 Mi 19.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de