www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Verknüpfungen
Verknüpfungen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verknüpfungen: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 12:54 So 11.09.2005
Autor: ONeill

Hy!

Wir (11. Klasse) haben nun seit einer Woche das Thema Verknüpfungen und mit dem Thema komme ich im Moment noch nicht so gut zurecht. Hauptsächlich beschäftigen wir uns dabei mit Textaufgaben mit Extremalbedingungen. Und dann habe ichnun dazu einige Fragen.
Bei den folgenden Funktionen soll ich die erste Ableitung bilden:
f(x)= u(x)*v(x)*w(x)
Hierbei würde man ja eigentlich die Produktregel anwenden, aber bisher hatten wir dabei immer nur zwei Variablen also zb. f(x)= u(x)*v(x)
Mich irritiert also noch das w(x).
Und noch weitere Funktionen wo die erste Ableitung gesucht ist.
[mm] f(x)=(1+(x^2+3)^4)^5 [/mm]
f(x)=x^11 *(12x-3)+cos(x)

Bei der folgenden Funktion habe ich die Lösungbin mir aber nicht sicher, ob dies richtig ist.
[mm] g(x)=(h(x))^3 [/mm]
mein Ergebniss: [mm] g´(x)=3+(h(x))^2+h´(x) [/mm]


Von der Folgenden Funktion sollen alle Hoch-, Tief- und Wendepunkte gefunden werden: [mm] f(x)=x^3/(x-1) [/mm]
in Worten: x hoch drei durch x-1
Davon habe ich nun die ersten beiden Ableitungen gebildet:
f´(x)= [mm] x^2 *(2x-3)/(x-1)^2 [/mm]
f´´(x)= [mm] -2x(x^2-3x+3)/(x-1)^3 [/mm]

Nun habe ich allerdings bei den Wende und Extrempunkten Probleme.

Ich hoffe ihr könnt mir helfen. Schonmal im Voraus vielen Dank.

        
Bezug
Verknüpfungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:56 So 11.09.2005
Autor: ONeill

Habe grade noch gesehen, dass in den Funktionen so pfeile und mm in Klammern steht. Das einfach ignorieren.

Bezug
        
Bezug
Verknüpfungen: Hilfe
Status: (Antwort) fertig Status 
Datum: 13:34 So 11.09.2005
Autor: Zwerglein

Hi, ONeill,

>  Bei den folgenden Funktionen soll ich die erste Ableitung
> bilden:
>  f(x)= u(x)*v(x)*w(x)
> Hierbei würde man ja eigentlich die Produktregel anwenden,
> aber bisher hatten wir dabei immer nur zwei Variablen also
> zb. f(x)= u(x)*v(x)
>  Mich irritiert also noch das w(x).

Setz' doch einfach eine Klammer: f(x) = (u(x)*v(x))*w(x)

Dann lautet die Produktregel:
f'(x) = Ableitung der Klammer*w(x) + Klammer*w'(x)

In einer Nebenrechnung kannst Du die Klammer ableiten:
(u(x)*v(x))' = u'(x)*v(x) + u(x)*v'(x)

und erhältst so:

f'(x) = (u'(x)*v(x) + u(x)*v'(x))*w(x) + (u(x)*v(x))*w'(x)

Ausmultiplizieren kannst Du's ja dann selbst!


>  Und noch weitere Funktionen wo die erste Ableitung gesucht
> ist.
>  [mm]f(x)=(1+(x^2+3)^4)^5[/mm]
>  f(x)=x^11 *(12x-3)+cos(x)

Bei der ersten Aufgabe: 2 mal die Kettenregel verwenden und zwar "von außen nach innen".
Bei der 2. Aufgabe den 1. Summanden mit Produktregel ableiten; Ableitung des Cosinus einfach addieren!

Mach's mal und der MatheRaum kontrolliert's dann!

>  
> Bei der folgenden Funktion habe ich die Lösung; bin mir aber
> nicht sicher, ob dies richtig ist.
>  [mm]g(x)=(h(x))^3[/mm]
>  mein Ergebniss: [mm]g'(x)=3+(h(x))^2+h'(x)[/mm]

Hoffentlich hast Du Dich bloß bei den Rechenzeichen vertippt; sonst musst Du die Regeln nochmals GAAANZ GENAU anschauen!

Richtig wäre nämlich: [mm] g'(x)=3*(h(x))^2*h'(x) [/mm]

>  
>
> Von der Folgenden Funktion sollen alle Hoch-, Tief- und
> Wendepunkte gefunden werden: [mm]f(x)=x^3/(x-1)[/mm]
> in Worten: x hoch drei durch x-1
>  Davon habe ich nun die ersten beiden Ableitungen
> gebildet:
>  f´(x)= [mm]x^2 *(2x-3)/(x-1)^2[/mm]

Stimmt!

>  f´´(x)= [mm]-2x(x^2-3x+3)/(x-1)^3[/mm]

  
Das Minus-Zeichen ist falsch!
f''(x) = [mm] \bruch{2x(x^{2}-3x+3)}{(x-1)^{2}} [/mm]

> Nun habe ich allerdings bei den Wende und Extrempunkten
> Probleme.
>  

Vermutlich macht Dir der Terrassenpunkt bei x=0 Probleme!?
[mm] x_{1/2/3} [/mm] ist eine dreifache Nullstelle; daher ist es logisch, dass der Graph im Ursprung einen Terrassenpunkt hat.
Dieser ist gleichzeitig der einzige Wendepunkt, da die Klammer [mm] (x^{2}-3x+3) [/mm] im Zähler der 2. Ableitung nicht =0 sein kann (negative Diskriminante!).
Weiterhin hat der Graph bei x=1,5 eine relativen Tiefpunkt.

Reicht Dir das?

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de