www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Verknüpfungen in einem Körper
Verknüpfungen in einem Körper < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verknüpfungen in einem Körper: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:28 Di 03.07.2007
Autor: nimet

Aufgabe
hallo,

wiederhole grad ein paar analysis Aufgaben und verstehe eine Übung nicht, da ich auch leider die Übung versäumt habe!:(

also die Aufgabe lautet:

Es sei Z eine Menge mit genau drei Elmenten

a. Zeigen Sie, dass es- bis auf Bezeichnung- höchstens eine Möglichkeit gibt, auf Z Verknüpfungen zu erklären, die Z zu einem Körper machen. (Sie brauchen nicht zu beweisen, dass alle Körperaxiome erfüllt sind.)

b. Zeigen Sie, dass es nicht möglich ist, Z zu einem angeordneten Körper zu machen!

P.S.: es handelt sich bei Z nicht um die ganzen Zahlen und es heißt eigentlich Z3 wobei die drei unten steht als index!
  

ich verstehe garnicht was die aufgabe von mir will!ich würde dort jetzt versuchen alle körperaxiome zu berechnen, aber dies soll ich ja eben grade nicht!

Wie muss ich vorrangehen und was für andere möglichkeiten gibt es um zu zeigen dass es sich um einen körper handelt ohne die axiome zu überprüfen und was meinen die mit der verknüpfung????

recht herzlichen dank im vorraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Verknüpfungen in einem Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 23:44 Di 03.07.2007
Autor: Bastiane

Hallo nimet!

> also die Aufgabe lautet:
>  
> Es sei Z eine Menge mit genau drei Elmenten
>  
> a. Zeigen Sie, dass es- bis auf Bezeichnung- höchstens eine
> Möglichkeit gibt, auf Z Verknüpfungen zu erklären, die Z zu
> einem Körper machen. (Sie brauchen nicht zu beweisen, dass
> alle Körperaxiome erfüllt sind.)
>  
> b. Zeigen Sie, dass es nicht möglich ist, Z zu einem
> angeordneten Körper zu machen!
>  
> P.S.: es handelt sich bei Z nicht um die ganzen Zahlen und
> es heißt eigentlich Z3 wobei die drei unten steht als
> index!

Du meinst also [mm] \IZ_3!? [/mm] Sag das doch gleich... ;-)
  

> ich verstehe garnicht was die aufgabe von mir will!ich
> würde dort jetzt versuchen alle körperaxiome zu berechnen,
> aber dies soll ich ja eben grade nicht!
>  
> Wie muss ich vorrangehen und was für andere möglichkeiten
> gibt es um zu zeigen dass es sich um einen körper handelt
> ohne die axiome zu überprüfen und was meinen die mit der
> verknüpfung????

Also, ein Körper ist doch eine Menge zusammen mit zwei Verknüpfungen - meistens mit + und [mm] \star [/mm] bezeichnet. Für a) würde ich mich jetzt schon an den Körperaxiomen entlang hangeln, es muss ja schließlich neutrale und inverse Elemente geben. Und da [mm] \IZ_3 [/mm] aus nur drei unterschiedlichen Elementen besteht, geht das dann wohl nur auf eine Art und Weise. Vielleicht musst du nicht noch beweisen, dass das Kommutativ- und Assoziativgesetz gelten...

Mehr fällt mir da zu so später Stunde leider nicht ein... :-)

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Verknüpfungen in einem Körper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:51 Di 03.07.2007
Autor: nimet

danke hat mir weitergeholfen!werde mich mal jetzt noch an die aufgabe machen!

gute nacht ;))

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de