www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Verständnis Aufgabenstellung
Verständnis Aufgabenstellung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnis Aufgabenstellung: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:11 Mo 05.12.2005
Autor: bravo

Hey,
habe hier eine Aufgabe, bei der ich mir die Aufgabenstellung noch nicht so klar ist.
Aufgabe: Für die Projektion [mm] \pi_{i} [/mm] : X -> X , 1 <= i <=r gelte: [mm] \summe_{i=1}^{r} \pi_{i} [/mm] = [mm] id_x [/mm] , [mm] \pi_{i} \circ \pi_{j} [/mm] =0 für i [mm] \not= [/mm] j .
Man zeige: X = [mm] \oplus_{i=1}^{r} [/mm] Bild [mm] \pi_{i}. [/mm]

Zum Verständnis der Aufgabenstellung: Soll das heißen, dass ein Element [mm] x_{1} [/mm] durch die Projektion [mm] \pi_{1} [/mm] auf das element [mm] \pi_{1}(x_{1}) [/mm] abgebildet wird...bis ein Element [mm] x_{r} [/mm] durch die Projektion [mm] \pi_{r} [/mm] auf das element [mm] \pi_{r}(x_{r}) [/mm] abgebildet wird, so dass die Summe davon den Vektorraum X erzeugt?
oder heißt es: Ein Element x wird mit [mm] \pi_{1} [/mm] auf [mm] \pi_{1}(x) [/mm] abgebildet, das wiederum auf das element [mm] \pi_{2}( \pi_{1} [/mm] auf [mm] \pi_{1}(x) [/mm] ) ... bis man die projektion [mm] \pi_{r} [/mm] anwendet und dann wieder x bekommt?
oder soll es heißen: Man wende [mm] \pi_{1} [/mm] auf ein beliebiges x an, addiere dazu [mm] \pi_{2} [/mm] angewandt auf dass gleiche x, ... , addiere [mm] \pi_{r} [/mm] auf das gleiche x angewandt und erhält mit dieser Summe das ursprünliche x?

Bisher glaube ich eher, dass die dritte Vorstellung am ehesten zutrifft...

Bin dankbar für die korekte Übersetzung der Aufgabenstellung (auch für Tipps zur Angehensweise der Aufgabe wenn möglich).

Wünsche ansonsten noch einen angenehmen Abend.


ps.: bin mir nicht ganz sicher ob es bei [mm] "id_{x}" [/mm] eigentlich [mm] id_{X} [/mm] heißen soll.


Grüße, Sebastian Bravo Lutz

        
Bezug
Verständnis Aufgabenstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 Mo 05.12.2005
Autor: angela.h.b.


> Hey,
>  habe hier eine Aufgabe, bei der ich mir die
> Aufgabenstellung noch nicht so klar ist.
>  Aufgabe: Für die Projektion [mm]\pi_{i}[/mm] : X -> X , 1 <= i <=r

> gelte: [mm]\summe_{i=1}^{r} \pi_{i}[/mm] = [mm]id_x[/mm] , [mm]\pi_{i} \circ \pi_{j}[/mm]
> =0 für i [mm]\not=[/mm] j .
>  Man zeige: X = [mm]\oplus_{i=1}^{r}[/mm] Bild [mm]\pi_{i}.[/mm]

> Bin dankbar für die korekte Übersetzung der
> Aufgabenstellung (auch für Tipps zur Angehensweise der
> Aufgabe wenn möglich).

Hallo,

Gegeben hast Du einen ganzen Schwung von Abbildungen [mm] \pi_1,\pi_2, \pi_3,...,\pi_r [/mm] mit folgenden Eigenschaften:

[mm] 1)\pi_1+\pi_2+ \pi_3+...+\pi_r=id_X, [/mm] d.h.
für alle x [mm] \in [/mm] X gilt [mm] (\pi_1+\pi_2+ \pi_3+...+\pi_r)(x)= \pi_1(x)+...+\pi_r(x)=x [/mm]
und
2) die Verkettung zwei verschiedener dieser Abbildungen bildet auf die Null ab, für [mm] i\not=j [/mm] ist [mm] \pi_i \circ \pi_j=0 [/mm] , d.h. für alle x [mm] \in [/mm] X  ist [mm] \pi_i(\pi_j(x))=0 [/mm] falls [mm] i\not=j. [/mm]

Zeigen soll man nun:

X ist die direkte Summe der Bildräume.

Dies beinhaltet zweierlei:
X ist die Summe der Bildräume, d.h. jedes x [mm] \in [/mm] X kann man als Summe von Elementen der Bildräume schreiben.
Und: Der Schnitt von je zwei dieser Bildräume ist {0}, also für i [mm] \not=j [/mm] ist [mm] bild\pi_i \cap [/mm] bild [mm] \pi_j={0} [/mm]

Gruß v. Angela

Bezug
                
Bezug
Verständnis Aufgabenstellung: danke erstmal
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 Mo 05.12.2005
Autor: bravo

Hey angela,
vielen dank für deine antwort. Habe sie mir eben durchgelesen und denke, dass ich so mit der aufgabe weiter kommen sollte. Für heute bin ich allerdings erstmal fertig mit mathe, so dass ich wohl morgen erst wieder schreiben werde.

Wünsche dir einen noch angenehmen abend.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de