www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Verständnisfrage Schwingungen
Verständnisfrage Schwingungen < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisfrage Schwingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Mi 11.01.2006
Autor: Phecda

hi ich habe im physik buch folgendes gelesen:
für lineare operationen kann die darstellung u= [mm] u_{0}cos(wt+p) [/mm] der schwingenden größe u durch die komplexe darstellung [mm] z=u_{0}*e^{i(wt+p)} [/mm] ersetzt werden, wobei der physikalische Inhalt dem realteil von z zugeordnet wird.
ok ist ja eigentlich klar nur verstehe ich nicht was "für lineare operationen" heißt und warum die beschriebende beziehung nur für lineare operationen gilt .. thx mfg Phecda

        
Bezug
Verständnisfrage Schwingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Mi 11.01.2006
Autor: piet.t

Hallo Phecda,

der Ausdruck "lineare Operationen" erscheint mir auch etwas seltsam, aber gemeint ist wohl folgendes (mit ein bisschen Anlauf):
Schwingungen sind ja grundsätzlich um jede stabile Gleichgewichtslage möglich. Eine Kugel kann z.B. in einer Mulde um den tiefsten Punkt "schwingen", egal wie die Vertiefung geformt ist.
Die Bewegung wird allerdings nur dann durch die Gleichung u= [mm] u_{0}cos(wt+p) [/mm] (oder die entsprechende komplexe Entsprechung) beschrieben, wenn die Kraft, die den Körper zurück in die Ruhelage zwingen will direkt proportional zur Auslenkung, also linear, ist. Denn dann ist auch die Differentialgleichung, die die Bewegung beschreibt, linear und hat damit die o.g. Lösung (man spricht dann auch von einer "harmonischen Schwingung"). Andere Zusammenhänge ergeben andere DGLn und damit auch andere Lösungen, sind aber oft nicht exakt zu lösen.
Den linearen Zusammenhang findet man zum Beispiel für ein Federpendel, für ein Fadenpendel ist der Zusammenhang aber schon komplizierter. Allerdings lässt sich in diesem Fall die rücktreibende Kraft für kleine Auslenkungen durch einen linearen Ausdruck annähern, so dass "in etwa" wieder die gleiche Bewegung herauskommt (aber eben nicht exakt).

Gruß

piet

Bezug
                
Bezug
Verständnisfrage Schwingungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:39 Mi 11.01.2006
Autor: Phecda

hi piet
jetzt ist mir ein licht aufgegangen danke vielmals :) mfg Phecda

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de