www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Verständnisfragen
Verständnisfragen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisfragen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Fr 01.02.2008
Autor: Irmchen

Guten Tag alle zusammen!

Ich bereite mich für eine Analysis III Klausur vor und gehe die Vorlesung ganz minuziös durch... Ich bin bis jetzt die Kapitel über die Maßkonstruktion und messbare Funktionen durchgegangen und habe zwei Dinge, die ich nicht 100%ig verstehe.

1. Das ist eine Folgerung, leider ohne Beweis :-( :

Jede endliche oder abzählbare Teilmenge vom [mm] \mathbb R^n [/mm] hat das Lebesque-Maß 0 !

Kann mir  jamand genau erklären warum?

Ich weiß, was abzählbar und was endlich bedeutet, sprich die Definitionen:

Eine Menge M heißt endlich, wenn es eim [mm] m \in \mathbb N \cup \{ 0 \} [/mm] und eine Bijektion von [mm] \{1, ..., m \} [/mm] auf M gibt.

Eine Menge M heißt abzählbar, wenn es eine Bijektion von [mm] \mathbb N [/mm] auf M gilt.

Und da z.B die rationalen Zahlen abzählbar sind, haben diese ja auch das Lebesque-Maß 0. Aber warum denn genau?
Ich habe die Vorstellung z.B. , dass man diese als einzelne Punkte auffasssen kann, und das Maß eines Punktes ist ja  Null und da das Maß [mm] \sigma [/mm] - additiv ist, wäre dann das komplette Maß auch Null.
Ist das richtig?

2. ( Wahrscheinlich total einfache und doofe Frage)

Seien [mm] f_n : X \to \overline{ \mathbb R } [/mm] messbare numerische Funktionen.

i) Wenn die Folge [mm] f_n [/mm] punktweise konvergiert, so ist [mm] \lim_{n} f_n [/mm] messbar?

Beweis:
[mm] \lim_{n} f_n = \lim_{n} \sup f_n. [/mm] Und da [mm] \lim_{n} \sup f_n. [/mm] mebbar ist, ist [mm] \lim_{n} f_n [/mm] auch messbar, wenn es existiert.

Ich verstehe die Gleichung [mm] \lim_{n} f_n = \lim_{n} \sup f_n. [/mm] nicht :-(. Könnte man mir erklären warum dies gilt, und wo kommt hier die punktweise Konvergenz in Spiel?

Vielen Dank für die Mühe!
Viele Grüße
Irmchen


        
Bezug
Verständnisfragen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Fr 01.02.2008
Autor: SEcki


>  Ich habe die Vorstellung z.B. , dass man diese als
> einzelne Punkte auffasssen kann, und das Maß eines Punktes
> ist ja  Null und da das Maß [mm]\sigma[/mm] - additiv ist, wäre dann
> das komplette Maß auch Null.
>  Ist das richtig?

Ja, das liegt daran das ein Punkt das Maß 0 hat. Muss man ja auch erstmal beweisen ... :)

> Ich verstehe die Gleichung [mm]\lim_{n} f_n = \lim_{n} \sup f_n.[/mm]
> nicht :-(.

Auf diesem Raum sind [m]\limsup[/m] und [m]\liminf[/m] als kleinster bzw. größter Häufungspunkt. Falls di Funktion konvergiert, sind diese Werte gleich. Vergleiche Heine-Borel im endlich-dim.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de