www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Verständnisfragen zu Vektorana
Verständnisfragen zu Vektorana < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisfragen zu Vektorana: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:20 Sa 02.05.2009
Autor: Der-Madde-Freund

Hi,

schonmal sorry für den langen Roman, aber
ich versuche mich gerade darin, die geometrischen Zusammenhänge hinter der Vektoranalysis zu begreifen, was ziemliche Kopfschmerzen verursacht.

Let's start...:

In der Analysis I hat man vornehmlich mit Funktionen zu tun, die von [mm] \IR \to \IR [/mm] abbilden, d.h. unsere "Vektoren" haten jeweils nur eine Komponente nach der man ableiten etc. konnte, z.B. f(x)=x³+5x²+2.
Zeichnen konnte man diese Funktionen meisten auch recht leicht indem man für die Variable x eine beliebige Zahl eingesetzt hat und hat dann eine andere (das Bild) erhalten, die man schön in sein Koordinatensystem eintragen konnte.

Dieses Semester jedoch ärgern sie uns in Analysis II mit fiesen Dingen wie der Vektoranalysis :(
Das "tolle" hieran ist, dass wir nichtmehr die gelieben normalen Funktionen vor uns haben, nein jetzt bilden wir vom [mm] \IR^n \to \IR [/mm] ab! Also etwa: f(x,y,z)=x²+xy-4z³ [Das wäre ja vom [mm] \IR³ \to \IR]. [/mm] Persönlich anschaulicher finde ich es ja, wenn man es so schreibt: [mm] f(\vektor{x_1 \\ x_2 \\ x_3})=x_1²+x_1x_2-4x_3³, [/mm] aber wir sind ja nicht bei wünsch dir was und es ist halt Geschmackssache.

Das erste große Schlagwort sind die Partiellen Ableitungen:
hier leitet man ja nach einer Variablen ab und behandelt die übrigen als Konstanten, rein technisch bereitet mir das weniger Problem aber wie habe ich mir das anschaulich vorzustellen? Wenn ich bei einer normalen (normale Funktionen sind für mich die geliebten Ana I Funktionen =p) die Ableitung berechnet habe, dann konnte man es sich ja als Steigung vorstellen. Wie habe ich mir das bei Partiellen Ableitungen vorzustellen? Ist es die Steigung für diese Variable oder so?

Angenommen ich hätte Mal Lust sone Funktion f(x,y,z)=x²+yz ohne Plotter per Hand zu zeichnen, wie müsste ich das machen? Bei normalen Funktionen ging es ja Zahl rein, Zahl raus, ins Koordinatensystem, fertig. Muss ich hier quasi zwei der Variablen immer als beliebige Konstanten ansehen und die andere Variable laufen lassen, bspw. f(x,1,2)=x²+1*2 und das mit allen möglichen Kombinationen?

Mein nächstes Schlagwort wäre der Gradient. Der Gradient ist doch an sich eine eigenständige Funktion, der alle partiellen Ableitungen in sich trägt, sprich [mm] gradf=\vektor{f_x \\ f_y \\ f_z}. [/mm] Der Gradient zeigt immer in Richtung des höchsten/geringsten Anstiegs, aber warum tut er dies?
Bei einem MAX, bzw. MIN ist der Gradient = 0.

Als leztztes hätte ich dann noch den Begriff der Richtungsableitung... was für eine Überlegung steckt hinter einer Richtungsableitung und warum braucht man diese?

Vielen dank schonmal, und es wird bestimmt bald Teil zwei meines Romanes geben ;)

Gute Nacht!

        
Bezug
Verständnisfragen zu Vektorana: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mo 04.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de