www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Verständnisfragen zu z^n
Verständnisfragen zu z^n < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisfragen zu z^n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:11 Mi 13.01.2016
Autor: Mino1337

Aufgabe
z.B [mm] z^{4}=-sqr(2)+sqr(2)i [/mm]

Geben sie ALLE Lösungen dieser Gleichung an.

Also wie man es macht ist mir klar, zum Beweis:

[mm] z^{4}=-\wurzel{2}+\wurzel{2}i [/mm]

zuerst in Polardarstellung bringen

[mm] r=\wurzel{(-\wurzel{2})^{2}+(\wurzel{2})^{2}}=\wurzel{2+2}=\wurzel{4}=2 [/mm]
[mm] \phi=arctan(\bruch{\wurzel{2}}{-\wurzel{2}})-\pi=arctan(-1)-\pi=-\bruch{1}{4}-\pi=\bruch{-1-4*\pi}{4}=\bruch{-5}{4}\pi \Rightarrow [/mm]

[mm] z^{4}=2e^{i\bruch{-5}{4}\pi}\Rightarrow [/mm]

[mm] z=\wurzel[4]{2e^{i\bruch{-5}{4}\pi}}=\wurzel[4]{2}\wurzel[4]{e^{i\bruch{-5}{4}\pi}}=\wurzel[4]{2}e^{\bruch{i\bruch{-5}{4}\pi}{4}}=\wurzel[4]{2}e^{i\bruch{-5}{16}\pi}=z_{0} [/mm]

um alle Lösungen zu bekommen müssen wir noch [mm] \bruch{\phi}{4}+k*2\pi [/mm] rechnen mit k={0,1,2,3} wobei wir k=0 schon haben.

[mm] \phi_{0}=\bruch{-5}{4}\pi+0*2\pi=\bruch{-5}{4}\pi/4=\bruch{-5}{16}\pi [/mm]
[mm] \phi_{1}=\bruch{-5}{4}\pi+1*2\pi=\bruch{3}{4}\pi/4=\bruch{3}{16}\pi [/mm]
[mm] \phi_{2}=\bruch{-5}{4}\pi+2*2\pi=\bruch{11}{4}\pi/4=\bruch{11}{16}\pi [/mm]
[mm] \phi_{3}=\bruch{-5}{4}\pi+3*2\pi=\bruch{19}{4}\pi/4=\bruch{19}{16}\pi [/mm]

[mm] \Rightarrow [/mm]

[mm] z_{0}=\wurzel[4]{2}e^{i\bruch{-5}{16}\pi} [/mm]
[mm] z_{1}=\wurzel[4]{2}e^{i\bruch{3}{16}\pi} [/mm]
[mm] z_{2}=\wurzel[4]{2}e^{i\bruch{11}{16}\pi} [/mm]
[mm] z_{3}=\wurzel[4]{2}e^{i\bruch{19}{16}\pi} [/mm]

Soweit so Falsch. In der Lösung gehen sie dieses mal von k={1,2,3,4} aus womit [mm] z_{0} [/mm] zu [mm] z_{1} [/mm] wird und dementsprechend es von [mm] z_{1} [/mm] bis [mm] z_{4} [/mm] geht. In anderen Lösungen ist es wieder von [mm] z_{0} [/mm] bis [mm] z_{3}. [/mm]

Kann man sich das aussuchen ? Was wäre nun Korrekt ?

Ausserdem verstehe ich nicht wieso man das [mm] k*2\pi [/mm] dazurechnet. Ich verstehe das es komplexe Vielfache der Lösung sind. Müsste man aber wenn man ALLE Lösungen will dann nicht von k=0 bis k=unendlich gehen ? Wieso nur bis k=4 bzw k=3 ?  

Vielen Dank für eure Antworten =)


        
Bezug
Verständnisfragen zu z^n: Antwort
Status: (Antwort) fertig Status 
Datum: 06:06 Mi 13.01.2016
Autor: fred97


> z.B [mm]z^{4}=-sqr(2)+sqr(2)i[/mm]
>  
> Geben sie ALLE Lösungen dieser Gleichung an.
>  Also wie man es macht ist mir klar, zum Beweis:
>  
> [mm]z^{4}=-\wurzel{2}+\wurzel{2}i[/mm]
>  
> zuerst in Polardarstellung bringen
>  
> [mm]r=\wurzel{(-\wurzel{2})^{2}+(\wurzel{2})^{2}}=\wurzel{2+2}=\wurzel{4}=2[/mm]
>  
> [mm]\phi=arctan(\bruch{\wurzel{2}}{-\wurzel{2}})-\pi=arctan(-1)-\pi=-\bruch{1}{4}-\pi=\bruch{-1-4*\pi}{4}=\bruch{-5}{4}\pi \Rightarrow[/mm]
>  
> [mm]z^{4}=2e^{i\bruch{-5}{4}\pi}\Rightarrow[/mm]
>
> [mm]z=\wurzel[4]{2e^{i\bruch{-5}{4}\pi}}=\wurzel[4]{2}\wurzel[4]{e^{i\bruch{-5}{4}\pi}}=\wurzel[4]{2}e^{\bruch{i\bruch{-5}{4}\pi}{4}}=\wurzel[4]{2}e^{i\bruch{-5}{16}\pi}=z_{0}[/mm]
>  
> um alle Lösungen zu bekommen müssen wir noch
> [mm]\bruch{\phi}{4}+k*2\pi[/mm] rechnen mit k={0,1,2,3} wobei wir
> k=0 schon haben.
>  
> [mm]\phi_{0}=\bruch{-5}{4}\pi+0*2\pi=\bruch{-5}{4}\pi/4=\bruch{-5}{16}\pi[/mm]
>  
> [mm]\phi_{1}=\bruch{-5}{4}\pi+1*2\pi=\bruch{3}{4}\pi/4=\bruch{3}{16}\pi[/mm]
>  
> [mm]\phi_{2}=\bruch{-5}{4}\pi+2*2\pi=\bruch{11}{4}\pi/4=\bruch{11}{16}\pi[/mm]
>  
> [mm]\phi_{3}=\bruch{-5}{4}\pi+3*2\pi=\bruch{19}{4}\pi/4=\bruch{19}{16}\pi[/mm]
>  
> [mm]\Rightarrow[/mm]
>  
> [mm]z_{0}=\wurzel[4]{2}e^{i\bruch{-5}{16}\pi}[/mm]
>  [mm]z_{1}=\wurzel[4]{2}e^{i\bruch{3}{16}\pi}[/mm]
>  [mm]z_{2}=\wurzel[4]{2}e^{i\bruch{11}{16}\pi}[/mm]
>  [mm]z_{3}=\wurzel[4]{2}e^{i\bruch{19}{16}\pi}[/mm]
>  
> Soweit so Falsch. In der Lösung gehen sie dieses mal von
> k={1,2,3,4} aus womit [mm]z_{0}[/mm] zu [mm]z_{1}[/mm] wird und
> dementsprechend es von [mm]z_{1}[/mm] bis [mm]z_{4}[/mm] geht. In anderen
> Lösungen ist es wieder von [mm]z_{0}[/mm] bis [mm]z_{3}.[/mm]
>
> Kann man sich das aussuchen ? Was wäre nun Korrekt ?

Die Nummerierung ist doch völlig schnuppe !!

Üblich ist aber [mm] z_0,...,z_3, [/mm]

oder bei n-ten Wurzeln [mm] z_0,....,z_{n-1}. [/mm]


>  
> Ausserdem verstehe ich nicht wieso man das [mm]k*2\pi[/mm]
> dazurechnet.

Weil man damit alle(!) Lösungen der Gleichung $ [mm] z^{4}=-\sqrt{2}+\sqrt{2}i [/mm] $ bekommt.



> Ich verstehe das es komplexe Vielfache der
> Lösung sind. Müsste man aber wenn man ALLE Lösungen will
> dann nicht von k=0 bis k=unendlich gehen ? Wieso nur bis
> k=4 bzw k=3 ?

Die Gl. $ [mm] z^{4}=-\sqrt{2}+\sqrt{2}i [/mm] $ hat genau die Lösungen

    [mm] z_0,...,z_3. [/mm]

Für k [mm] \ge [/mm] 4 oder k [mm] \le [/mm] -1 ist

     [mm] z_k \in \{ z_0,...,z_3\} [/mm]

FRED

> Vielen Dank für eure Antworten =)
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de