www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Verständnisproblem t-Schar
Verständnisproblem t-Schar < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisproblem t-Schar: Gelöste Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:55 Fr 15.01.2010
Autor: Mampf

Aufgabe
Gegeben:

[mm] f_{a}(x)= \bruch{1}{2} *x + a*e^-x [/mm]

[mm]P_{a}=(0|a)[/mm]


[mm] t_{a} [/mm] sei die Tangente an den Graphen von [mm] f_{a} [/mm] im Schnittpunkt [mm] P_{a} [/mm] mit der y-Achse.

a) Bestimmen Sie die Gleichung von  [mm] t_{a} [/mm]

b) Weisen sie nach, dass alle Geraden der Schar [mm] t_{a} [/mm] einen gemeinsamen Punkt Q besitzen.

c) Bestimmen Sie Q.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
________________________________________________________

HINWEIS: Es handelt sich hier um eine von mir selbst (vollständig und hoffentlich richtig) gelöste Aufgabe, allerdings habe ich noch Verständnisprobleme  
_______________________________________________________

Hallo!


Die Rechnungen an sich liegen auf der Hand (denke ich mir mal):

a)

[mm] t_{a}(x)= (0,5-a)*x+a [/mm]

b)
[mm] \begin{matrix} 0.5*x-a*x+a &=& 0,5*x-b*x+b\\ \ x(b-a) & =& b-a\\ \ x=1 \end{matrix}[/mm]

c) x=1 in t(x) => y=0,5

Q(1|0,5)

ABER!

Große Verständnisprobleme mit der Aufgabenstellung:

Problem 1: Müsste ich nicht erst die Tangentenbedingung überprüfen (vorallem in Kursarbeiten/Abi, könnten ja ne Falle sein), oder ist das bei solchen Aufgaben eher unüblich bzw. nicht nötig?

I. [mm] f'(0)=f'(0)[/mm] was ja klar ist
II.[mm] t(0)=f(0)[/mm]
   [mm]a=a [/mm]

Problem 2: Heißt [mm] "t_{a} [/mm] sei die Tangente an den Graphen von [mm] f_{a} [/mm] im Schnittpunkt [mm] P_{a} [/mm] mit der y-Achse. ", dass sich im Punkt [mm] P_{a} [/mm] alle Tangenten (und die passenden Kurven) berühren? Ich denke schon, schließlich könnte ich dann nicht die Tangentengleichung aufstellen, oder?

Wie schon angemerkt bin ich in der Wiederholung und wollte mir nur zu 100% sicher sein, dass ich das auch richtig "verinnerliche".

MfG






        
Bezug
Verständnisproblem t-Schar: Antwort
Status: (Antwort) fertig Status 
Datum: 00:25 Sa 16.01.2010
Autor: MontBlanc

Hi!

> Gegeben:
>  
> [mm]f_{a}(x)= \bruch{1}{2} *x + a*e^-x[/mm]
>  
> [mm]P_{a}=(0|a)[/mm]
>  
>
> [mm]t_{a}[/mm] sei die Tangente an den Graphen von [mm]f_{a}[/mm] im
> Schnittpunkt [mm]P_{a}[/mm] mit der y-Achse.
>
> a) Bestimmen Sie die Gleichung von  [mm]t_{a}[/mm]
>  
> b) Weisen sie nach, dass alle Geraden der Schar [mm]t_{a}[/mm] einen
> gemeinsamen Punkt Q besitzen.
>  
> c) Bestimmen Sie Q.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  ________________________________________________________
>  
> HINWEIS: Es handelt sich hier um eine von mir selbst
> (vollständig und hoffentlich richtig) gelöste Aufgabe,
> allerdings habe ich noch Verständnisprobleme
>  _______________________________________________________
>  
> Hallo!
>  
>
> Die Rechnungen an sich liegen auf der Hand (denke ich mir
> mal):
>  
> a)
>  
> [mm]t_{a}(x)= (0,5-a)*x+a[/mm]
>  
> b)
>  [mm] \begin{matrix} 0.5*x-a*x+a &=& 0,5*x-b*x+b\\ \ x(b-a) & =& b-a\\ \ x=1 \end{matrix}[/mm]
>  
> c) x=1 in t(x) => y=0,5
>  
> Q(1|0,5)
>  
> ABER!
>
> Große Verständnisprobleme mit der Aufgabenstellung:
>
> Problem 1: Müsste ich nicht erst die Tangentenbedingung
> überprüfen (vorallem in Kursarbeiten/Abi, könnten ja ne
> Falle sein), oder ist das bei solchen Aufgaben eher
> unüblich bzw. nicht nötig?

Was meinst du mit Tangentenbedingung ? f(x) muss an der Stelle differenzierbar sein...

> I. [mm]f'(0)=f'(0)[/mm] was ja klar ist
>  II.[mm] t(0)=f(0)[/mm]
>     [mm]a=a[/mm]
>  
> Problem 2: Heißt [mm]"t_{a}[/mm] sei die Tangente an den Graphen
> von [mm]f_{a}[/mm] im Schnittpunkt [mm]P_{a}[/mm] mit der y-Achse. ", dass
> sich im Punkt [mm]P_{a}[/mm] alle Tangenten (und die passenden
> Kurven) berühren? Ich denke schon, schließlich könnte
> ich dann nicht die Tangentengleichung aufstellen, oder?

Das ist richtig. Und auch logisch, wenn Du Dir überlegst, dass Du eine Schar zu einem bestimmten Punkt bestimmst. Je nach Parameter "a" verändert sich dann natürlich die jeweilige Steigung usw. usf.

> Wie schon angemerkt bin ich in der Wiederholung und wollte
> mir nur zu 100% sicher sein, dass ich das auch richtig
> "verinnerliche".
>  
> MfG
>  

Gute Nacht,

exe

Bezug
                
Bezug
Verständnisproblem t-Schar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:27 Sa 16.01.2010
Autor: Mampf


>  
> Was meinst du mit Tangentenbedingung ? f(x) muss an der
> Stelle differenzierbar sein...
>  

Ich meinte damit, ob t(a) auch echt eine Tangente von f(a) an der Stelle [mm] P_{a} [/mm] ist.

Aber mittlerweile ist es mir klar geworden steht ja so in der Aufgabenstellung drin ("sei").

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de