www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Vertauschbarkeit von GW/Diff.
Vertauschbarkeit von GW/Diff. < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vertauschbarkeit von GW/Diff.: korrektur, Hinweis
Status: (Frage) überfällig Status 
Datum: 17:30 Di 17.04.2012
Autor: kullinarisch

Aufgabe
(a) Zeige, dass ein Polynom durch seine Taylorreihe in einem beliebigen Punkt [mm] x_0 [/mm] auf [mm] \IR [/mm] darstellbar ist.

(b) Zeige mit Hilfe des Satzes über Vertauschbarkeit von Differentiation und Summation bei Potenzreihen, dass cos´(x)=-sin(x) und sin´(x)=cos(x) für x [mm] \in \IR. [/mm]

Hallo,

zur (a):

Ich bin bezüglich meiner Lösung etwas ungläubig. Ich brauche im Prinzip gar nicht viel zu schreiben. Also sei [mm] P_n(x) [/mm] ein Polynom n-ten Grades und [mm] T_{x_0, n}(x) [/mm] das dazugehörige Taylorpolynom mit einem beliebigen Entwicklungspunkt [mm] x_0 \in\IR. [/mm] Dann gilt doch für das Lagrange- Restglied:

[mm] |P_n(x)-T_{x_0, n}|= \bruch{1}{(n+1)!}P_n^{n+1}(\gamma)(x-x_0)^{n+1}= [/mm] 0 weil [mm] P_n^{n+1}(\gamma) [/mm] immer 0 ist für alle [mm] \gamma \in\IR. [/mm] Damit wäre man doch schon fertig oder irre ich mich?

(b)

Ich zeige: -sin(x)=cos´(x) indem ich -sin(x) integriere:

Der Konvergenzradius ist bei Sinus ja bekanntlich ganz [mm] \IR, [/mm] also brauche ich mir keine Sorgen zu machen, ob der Satz über die Vertauschbarkeit von Integration und Summation gilt.

[mm] -\integral_{0}^{x}{sin(t) dt} [/mm]

= [mm] -\integral_{0}^{x}{(\summe_{k=0}^{\infty}\bruch{(-1)^kt^{2k+1}}{(2k+1)!}) dt} [/mm]

[mm] =-\summe_{k=0}^{\infty}(\integral_{0}^{x}\bruch{(-1)^kt^{2k+1}}{(2k+1)!} [/mm] dt)

[mm] =-\summe_{k=0}^{\infty}\bruch{(-1)^{k}x^{2k+2}}{(2k+2)(2k+1)!} [/mm]

[mm] =\summe_{k=0}^{\infty}\bruch{(-1)^{k+1}x^{2k+2}}{(2k+2)!} [/mm]

... Das ist nicht wirklich das was ich haben wollte. Gibt es hier einen Trick? Darf ich z.B. ohne weiteres das hier machen?

2k+2:= 2n [mm] \Rightarrow \exists x\in\IR: t^{2k+2}=x^{2n} [/mm]

sodass ich schreiben kann:

[mm] \summe_{k=0}^{\infty}\bruch{(-1)^{k+1}x^{2k+2}}{(2k+2)!}=\summe_{n=0}^{\infty}\bruch{(-1)^{n}x^{2n}}{(2n)!}=cos(x) [/mm]

Auch wenn ich das machen könnte, habe ich ja gezeigt:  -sin(t) aufgeleitet
ergibt cos(x) und damit hab ich zwei verschiedene Variablen.. es sollten aber doch schon die selben sein!?

Ich weiß mir gerade nicht zu helfen. Würde mich über einen Hinweis freuen!

Grüße, kulli

        
Bezug
Vertauschbarkeit von GW/Diff.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:40 Mi 18.04.2012
Autor: kullinarisch

Hallo, ich merke gerade selber, dass der Weg irgendwie nicht so sinnvoll war. Habe nochmal genau ins Skript geschaut und weiß jetzt, dass ich anders vorgehen sollte.

Es geht um den Satz 1:

Ist [mm] \summe_{n\ge1}^{}a_nx^n [/mm] eine Potenzreihe mit Konv. Radius R>0, so ist die Funktion P: (-R, [mm] R)\to\IC, P(x)=\summe_{n=0}^{\infty}a_nx^n [/mm] diffbar und [mm] P´(x)=\summe_{n=1}^{\infty}na_nx^{n-1} [/mm]

Davor hatten wir diesen Satz 2:

Vertauschbarkeit des Grenzwerts mit Differentiation:

Seien [mm] f_n: [/mm] [a, [mm] b]\to\IC [/mm] mit:

(1) [mm] f_n [/mm] stetig diffbar
(2) [mm] f_n\to [/mm] f, [mm] n\to \infty [/mm] punktweise
(3) f´_n konvergiert gleichmäßig gegen g: [a, [mm] b]\to\IC [/mm]

Dann ist f auch stetig diffbar und f´=g, das heißt [mm] \bruch{d}{dx}(\limes_{n\rightarrow\infty}f_n)= \limes_{n\rightarrow\infty}(\bruch{d}{dx}f_n) [/mm]

So und ich soll zeigen: (i)cos´(x)=-sin(x) und (ii)sin´(x)=cos(x) für [mm] x\in\IR. [/mm]

Abgesehen davon, dass mir die Eigenschaften vom cos(x) bekannt sind, könnte es sein, dass ich die 3 Punkte von Satz 2 nochmal Zeigen muss? Andernfalls verstehe ich nicht was die Aufgabe soll, da man (bei (i)) cos(x) dann laut Satz 1 einfach ableiten könnte (also die Reihe) und  dann nach ein wenig friemeln schon -sin(x) erhält.

Hat jemand eine Idee worin hier die Aufgabe bestehen soll? Ansonsten freu ich mich über die geschenkten Punkte.. :)




Bezug
                
Bezug
Vertauschbarkeit von GW/Diff.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 So 22.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Vertauschbarkeit von GW/Diff.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Sa 21.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de