www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Verteilung von Primzahlen
Verteilung von Primzahlen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilung von Primzahlen: Idee
Status: (Frage) beantwortet Status 
Datum: 23:10 Sa 17.11.2012
Autor: Melisa

Aufgabe
Hallo an alle,
ich habe von der Uni ne Aufgabe gekriegt:
1) Es gibt beliebig große Intervalle von [mm] \IN, [/mm] in denen keine Primzahl liegt. D.h. für alle
n ∈ [mm] \IN [/mm] gibt es ein b ∈ [mm] \IN, [/mm] so dass die Zahlen b, b+1, . . . , b+n+1 keine Primzahlen
sind.
Hinweis: Betrachten Sie die Funktion f(n) := 2 · 3 · 4 · . . . · n und die auf f(n + 1)
folgenden Zahlen in [mm] \IN. [/mm]
2. Für jedes n ∈ N gibt es immer eine Primzahl p mit n < p <= f(n) + 1. Hierbei ist
f die Funktion aus dem obigen Hinweis.

Meine Idee:
1.(n+1)!+2,...,(n+1)!+n+1 sind keine Primzahlen also man kann
b = (n + 1)! + 2 auswaehlen.  ist das richtig??

Bei der 2.Aufgabe hab ich keine Ahnung, vieleicht koennt ihr mir helfen.
LG. Melisa

        
Bezug
Verteilung von Primzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:09 So 18.11.2012
Autor: reverend

Hallo Melisa,

da stimmt noch etwas nicht.

> Hallo an alle,
>  ich habe von der Uni ne Aufgabe gekriegt:

Oha. Das ist ja ein Ding. ;-)

>  1) Es gibt beliebig große Intervalle von [mm]\IN,[/mm] in denen
> keine Primzahl liegt. D.h. für alle
>  n ∈ [mm]\IN[/mm] gibt es ein b ∈ [mm]\IN,[/mm] so dass die Zahlen b,
> b+1, . . . , b+n+1 keine Primzahlen
>  sind.

Bist Du sicher, dass da nicht b+n-1 als Letztes steht?

>  Hinweis: Betrachten Sie die Funktion f(n) := 2 · 3 · 4
> · . . . · n und die auf f(n + 1)
>  folgenden Zahlen in [mm]\IN.[/mm]
>  2. Für jedes n ∈ N gibt es immer eine Primzahl p mit n
> < p <= f(n) + 1. Hierbei ist
>  f die Funktion aus dem obigen Hinweis.

>

>  Meine Idee:
>  1.(n+1)!+2,...,(n+1)!+n+1 sind keine Primzahlen also man
> kann
> b = (n + 1)! + 2 auswaehlen.  ist das richtig??

Dann sind alle Zahlen von b bis b+n-1 sicher nicht prim.

> Bei der 2.Aufgabe hab ich keine Ahnung, vieleicht koennt
> ihr mir helfen.

Such doch mal systematisch nach einer Zahl p im angegebenen Intervall, das durch keine Zahl [mm] m\le{n} [/mm] teilbar ist. Tipp: fang "von oben" an.

Grüße
reverend


Bezug
                
Bezug
Verteilung von Primzahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:18 So 18.11.2012
Autor: Melisa

Hallo reverend,
ja du hast Recht da muss -1 stehen. Also 1.Aufgabe hab ich richtig geloest ja?

Bezug
                
Bezug
Verteilung von Primzahlen: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:19 So 18.11.2012
Autor: Melisa

und noch eine Frage: was meinst du "fang "von oben" an"?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de