www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Verteilung von n Personen
Verteilung von n Personen < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilung von n Personen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:57 Sa 26.11.2011
Autor: svcds

Aufgabe 1
Aufgabe: Wieviele Möglichkeiten gibt es, 15 Studierende in 3 Praktikumsteams zu je 5 Mitgliedern aufzuteilen?
(b) Von den Studierenden seien 2 Chemiker und die übrigen Biologen. Wieviele Möglichkeiten für die Teambildung gibt es, wenn
(i) die beiden Chemiker in einer Gruppe sind,
(ii) die beiden Chemiker in getrennte Gruppen aufgeteilt werden?

Aufgabe 2
Wieviele Autokennzeichen in Recklinghausen(RE) mit einer dreistelligen Zahl am Ende ohne führende Nullen und mit einem oder zwei Buchstaben können maximal vergeben werden?

Hi also ich soll jetzt per "Fernunterricht" sozusagen einer Freundin Mathe erklären.

Momentan hab ich diese 2 Aufgaben zu erledigen, da meine letzten Matheerfahrungen in Stochastik schon etwas her sind, probier ich mal die Aufgaben zu lösen.

Also bei 1a hab ich 756756 raus, also 15 über 5 mal 10 über 5 mal 5 über 5. Weil ich hab ja 15=n und dann eben k=5 immer. Gruppenzugehörigkeit ist egal. Stimmt das so?! Oder kommt da ein Plus zwischen?

Bei b) liegt mein Wissen viel zu lange zurück. Formel wäre ganz hilfreich.

Aufgabe 2:

also ich hab entweder OO-XX 999 oder OO-X 999.

Wenn ich mit einem Buchstaben rechne, hab ich ja 26 Möglichkeiten für diese Stelle, dann noch 9*10*10 Stellen für die Zahlen. Bedeutet also 26*900 = 23400 Möglichkeiten. Bei 2 Buchstaben ist es dann natürlich 26*26*9*10*10=608400 + 23400 Möglichkeiten = 631800 Möglichkeiten insgesamt?

liebe Grüße
Knut

        
Bezug
Verteilung von n Personen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 So 27.11.2011
Autor: luis52

Moin,

bei deiner Loesung von 1a habe ich Bauchschmerzen.  Der Einfachheit halber gehe ich mal von 6 Personen aus, die in Zweiergruppen aufzuteilen sind.  Deiner Argumentation nach gibt es [mm] $\binom{6}{2}\binom{4}{2}\binom{2}{2}=90$ [/mm] Moeglichkeiten.  Zwei davon sind ((a,b),(c,d),(e,f)) und ((c,d),(a,b),(e,f)).  Diese beiden Gruppeneinteilungen sind jedoch identisch.  M.E. musst man noch durch die Anzahl der Permutationen der Gruppen dividieren, also [mm] $\binom{6}{2}\binom{4}{2}\binom{2}{2}/3!=15$. [/mm]

In deinem Fall ist die gesuchte Anzahl also $756756/6=126126_$.

Bei 1bii bestimmst du wie in 1a die Anzahl der Moeglichkeiten, Gruppen mit 3, 5, 5 Personen zu bilden.

Bei 1bii nennen wir die Chemiker a und b. Wie in 1a bestimmst du die Anzahl der Moeglichkeiten, Gruppen mit 4, 4, 5 Personen zu bilden.  Stelle dir die Gruppen jeweils alphabetisch sortiert vor.  Dann macht es Sinn zwischen der Zuordnung (a,b) und (b,a) zu den Vierergruppen zu unterscheiden.  Deswegen ist die ausgangs ermittelte Anzahl zu verdoppeln.

Den Rest hast du m.E.  korrekt geloest.

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de