www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Verteilungsfunktion berechnen
Verteilungsfunktion berechnen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion berechnen: Idee
Status: (Frage) beantwortet Status 
Datum: 21:22 Do 19.10.2017
Autor: mathstu

Aufgabe
Wir betrachten die Maße [mm] \delta_k(A) [/mm] = [mm] 1_{k \in A}, [/mm] wobei 1 die Indikatorfunktion darstellt, und [mm] \lambda_{[k;k+1)}(A) [/mm] = [mm] \lambda(A \cap[k;k+1)) [/mm] mit A [mm] \in B(\IR). [/mm] Ein Maß [mm] P_r [/mm] auf [mm] (\IR, B(\IR)) [/mm] hat die Dichte
[mm] f_r(x)=\begin{cases} \bruch{r}{2}exp(-rx), & x \in [0, \infty) \setminus \IN \\ \bruch{3}{x^2 \pi^2}, & x \in \IN \\ 0, & sonst \end{cases} [/mm]
bezüglich des Maßes [mm] \mu [/mm] = [mm] \lambda_{[0,1)} [/mm] + [mm] \summe_{k=1}^{\infty} (\delta_k [/mm] + [mm] \lambda_{[k,k+1)}), [/mm] wobei [mm] 0 a) Berechnen Sie die zu [mm] P_1 [/mm] zugehörige Verteilungsfunktion.
b) Zeigen Sie, dass [mm] P_r [/mm] für alle [mm] 0

Guten Abend Matheraum-User!

Ich soll obige Aufgabe lösen und könnte bisschen Hilfe gebrauchen.
Zur a):
Nach Definition ist die Verteilungsfunktion von der Form [mm] F_{P_1}(x)=P_1(-\infty, [/mm] x]). Außerdem gilt nach Aufgabenstellung, dass [mm] P_1(A)=\integral_A{f_1 d\mu} [/mm] für [mm] A\in B(\IR). [/mm]  Somit gilt [mm] F_{P_1}(x)=\integral_{-\infty}^{x}{f_1 d\mu}. [/mm] Allerdings habe ich nun Probleme das auszurechnen. Teile ich dann das Integral in die 3 Fälle auf in die die Dichtefunktion aufgeteilt ist? Und wenn ja, dann bleibt ja nur der erste Fall übrig weil die anderen beide 0 werden. Dann weiß ich allerdings nicht richtig, wie man dieses Integral berechnen würde. Hat vielleicht da jemand einen Tipp?

Zu b):
Um zu zeigen, dass [mm] P_r [/mm] ein Wahrscheinlichkeitsmaß ist reicht es zu zeigen, dass das Integral der Dichte über ganz [mm] \IR [/mm] 1 ergibt oder? Allerdings habe ich hier das gleiche Problem wie bei der a) und zwar dass ich nicht genau weiß wie man das Integral bezüglich eines Maßes berechnet.

Ich würde mich freuen, wenn mir bei dieser Aufgabe jemand etwas auf die Sprünge helfen könnte.

MfG, mathstu

        
Bezug
Verteilungsfunktion berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Do 19.10.2017
Autor: Gonozal_IX

Hiho,

>  Zur a):
>  Nach Definition ist die Verteilungsfunktion von der Form
> [mm]F_{P_1}(x)=P_1(-\infty,[/mm] x]). Außerdem gilt nach
> Aufgabenstellung, dass [mm]P_1(A)=\integral_A{f_1 d\mu}[/mm] für
> [mm]A\in B(\IR).[/mm]  Somit gilt
> [mm]F_{P_1}(x)=\integral_{-\infty}^{x}{f_1 d\mu}.[/mm]

[ok]

> Allerdings habe ich nun Probleme das auszurechnen.

Das ist gar nicht so schwer :-)

Mach dir erst mal klar, dass für zwei Maße [mm] $\mu_1,\mu_2$ [/mm] für das Integral gilt: [mm] $\int_A\, f\, d(\mu_1 [/mm] + [mm] \mu_2) [/mm] = [mm] \int_A\, f\, d\mu_1 +\int_A\, f\, d\mu_2$ [/mm]
D.h. das Maßintegral ist linear im Maß selbst.

Weiterhin gilt: $ [mm] \mu [/mm]  =  [mm] \lambda_{[0,1)} [/mm] + [mm] \summe_{k=1}^{\infty} (\delta_k [/mm] + [mm] \lambda_{[k,k+1)}) [/mm] = [mm] \lambda_{[0,1)} [/mm] + [mm] \summe_{k=1}^{\infty} \lambda_{[k,k+1)} [/mm] + [mm] \summe_{k=1}^{\infty}\delta_k [/mm] = [mm] \lambda_{[0,\infty)} [/mm] + [mm] \summe_{k=1}^{\infty}\delta_k$ [/mm]  

Statt $ [mm] \lambda_{[0,\infty)}$ [/mm] schreibe ich nun [mm] $\lambda$, [/mm] weil es faktisch das normale Lebesgue-maß auf [mm] $[0,\infty)$ [/mm] und f eh nichtnegativ ist (und damit in dem Bereich liegt)

Damit ergibt sich: $ [mm] F_{P_r}(x)=\integral_{-\infty}^{x}{f_r d\mu} [/mm] =  [mm] \integral_{-\infty}^{x} \,f_r\, d\lambda_{[0,\infty)} [/mm] + [mm] \summe_{k=1}^{\infty}\integral_{-\infty}^{x} \,f_r\, d\delta_k [/mm] $  

Nun überlege dir mal, wie [mm] $f_r$ [/mm] "aus Sicht" von [mm] $\lambda$ [/mm] und wie [mm] $f_r$ [/mm] aus Sicht von [mm] $\delta_k$ [/mm] "aussieht".
Welche Werte sind also von [mm] f_r [/mm] für [mm] $\lambda$ [/mm] relevant und welche für [mm] $\delta_k$ [/mm] und warum.

Gruß,
Gono

Bezug
                
Bezug
Verteilungsfunktion berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Fr 20.10.2017
Autor: mathstu

Hey Gono,

Danke für die schnelle Antwort.
Ist das Maßintegral nicht nach Konstruktion linear im Maß selbst, denn wir haben das Maßintegral über den Erwartungswert definiert, welcher linear ist?

Für den Fall $ x<0 $ ist die Verteilungsfunktion gleich 0.
Bei $ [mm] \integral_{-\infty}^{x} \,f_r\, d\lambda_{[0,\infty)} [/mm] $ müssen wir doch nur die Werte betrachten, die in $ x [mm] \in [0,\infty) \setminus \IN [/mm] $ liegen, weil das Lebesguemaß einer einelementigen Menge gleich 0 ist oder?
Und für $ [mm] \summe_{k=1}^{\infty}\integral_{-\infty}^{x} \,f_r\, d\delta_k [/mm] $ betrachten wir nur die Werte von 0 bis Gaußklammer von x (ich finde die Gaußklammer nicht in der Formelsammlung) da $k [mm] \in \IN$ [/mm] liegt und somit [mm] $\delta_k [/mm] $ für die Werte in [mm] $[0,\infty) \setminus \IN$ [/mm] gleich 0 ist. Ist das richtig?
Dann wäre die Verteilungfunktion von der Form
[mm] $F_{P_r}(x)=\integral_{-\infty}^{x}{f_r d\mu} [/mm] = [mm] \integral_{-\infty}^{x} \,f_r\, d\lambda_{[0,\infty)} [/mm] + [mm] \summe_{k=1}^{\infty}\integral_{-\infty}^{x} \,f_r\, d\delta_k [/mm]
= [mm] \integral_{-\infty}^{\infty} \,1_{(-\infty,x] \cap [0,\infty) \setminus \IN} [/mm] (t)* [mm] \bruch{r}{2}exp(-rt) \, d\lambda_{[0,\infty)}(t) [/mm] + [mm] \summe_{k=1}^{\infty}\integral_{-\infty}^{\infty} \,1_{(-\infty,x] \cap \IN} [/mm] (t) [mm] \bruch{3}{t^2 \pi^2}\, d\delta_k(t)$. [/mm]
Ist das soweit richtig?
Und wenn ja, dann würde ich jetzt versuchen die Funktionen in den beiden Integrale als Treppenfunktion darzustellen, damit wir die Integrale leicht ausrechnen können. Es ergibt sich dann
[mm] $\integral_{-\infty}^{\infty} \,1_{(-\infty,x] \cap [0,\infty) \setminus \IN}(t) \bruch{r}{2}exp(-rt) \, d\lambda_{[0,\infty)}(t) [/mm] + [mm] \summe_{k=1}^{\infty}\integral_{-\infty}^{\infty} \,1_{(-\infty,x] \cap \IN}(t) \bruch{3}{t^2 \pi^2}\, d\delta_k(t) [/mm]
= [mm] \bruch{r}{2}\integral_{-\infty}^{\infty} \,1_{[0,x] \setminus \IN}(t)exp(-rt) \, d\lambda_{[0,\infty)}(t) [/mm] + [mm] \bruch{3}{\pi^2} \summe_{k=1}^{\infty}\integral_{-\infty}^{\infty} \, \summe_{i=1}^{Gaußklammer(x)}1_{i}(t) \bruch{1}{t^2}\, d\delta_k(t)$. [/mm]
Aber wie könnte man hier die Funktion im ersten Integral als Treppenfunktion darstellen? Das sehe ich noch nicht so richtig.

VG, mathstu


Bezug
                        
Bezug
Verteilungsfunktion berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:39 Sa 21.10.2017
Autor: Gonozal_IX

Hiho,

> Danke für die schnelle Antwort.
>  Ist das Maßintegral nicht nach Konstruktion linear im
> Maß selbst, denn wir haben das Maßintegral über den
> Erwartungswert definiert, welcher linear ist?

Wie habt ihr denn den Erwartungswert definiert? Dieser ist ja normalerweise selbst ein Maßintegral... Und der Erwartungswert ist linear im Integranden, das ist aber etwas anderes.

> Für den Fall [mm]x<0[/mm] ist die Verteilungsfunktion gleich 0.
>  Bei [mm]\integral_{-\infty}^{x} \,f_r\, d\lambda_{[0,\infty)}[/mm]
> müssen wir doch nur die Werte betrachten, die in [mm]x \in [0,\infty) \setminus \IN[/mm] liegen, weil das Lebesguemaß einer einelementigen Menge gleich 0 ist oder?

Ja, und kurz in Formel geschrieben bedeutet das: $f(x) [mm] \equiv \bruch{r}{2}\exp(-rx)1_{[0,\infty)}$ $\lambda$-fast [/mm] sicher.
Die natürlichen Zahlen sind für das Lebesgue Maß eine Nullmenge, daher spielen die Funktionswerte an den Stellen "aus Sicht" des Lebesgue-Maßes keine Rolle.

>  Und für [mm]\summe_{k=1}^{\infty}\integral_{-\infty}^{x} \,f_r\, d\delta_k[/mm] betrachten wir nur die Werte von 0 bis Gaußklammer von x
> (ich finde die Gaußklammer nicht in der Formelsammlung)

Die linke Gaußklammer machst du mit \lfloor (für Left FLOOR), die rechte entsprechend mit \rfloor. D.h. \lfloor x \rfloor gibt dir [mm] $\lfloor [/mm] x [mm] \rfloor$. [/mm]

Betrachten wir erst mal nur das Integral: Das ist ein Integral bezüglich [mm] $\delta_k$, [/mm] also ein Maß, was nur auf [mm] $k\in\IN$ [/mm] Gewicht legt. D.h. sämtliche anderen Werte sind völlig irrelevant!
D.h. "Aus Sicht" von [mm] $\delta_k$ [/mm] ist nur $f(k)$ relevant, alle anderen Werte spielen keine Rolle!
D.h. es gilt: $f(x) [mm] \equiv \bruch{3}{k^2 \pi^2}$ $\delta_k$-fast [/mm] sicher!
Dass du die Summe nur bis [mm] $\lfloor [/mm] x [mm] \rfloor$ [/mm] summierst, ist korrekt.

Aber:

>  Dann wäre die Verteilungfunktion von der Form
>  [mm]$F_{P_r}(x)=\integral_{-\infty}^{x}{f_r d\mu}[/mm] =
> [mm]\integral_{-\infty}^{x} \,f_r\, d\lambda_{[0,\infty)}[/mm] +
> [mm]\summe_{k=1}^{\infty}\integral_{-\infty}^{x} \,f_r\, d\delta_k[/mm]
> = [mm]\integral_{-\infty}^{\infty} \,1_{(-\infty,x] \cap [0,\infty) \setminus \IN}[/mm]
> (t)* [mm]\bruch{r}{2}exp(-rt) \, d\lambda_{[0,\infty)}(t)[/mm] +
> [mm]\summe_{k=1}^{\infty}\integral_{-\infty}^{\infty} \,1_{(-\infty,x] \cap \IN}[/mm]
> (t) [mm]\bruch{3}{t^2 \pi^2}\, d\delta_k(t)$.[/mm]
>  Ist das soweit richtig?

Zum ersten Summanden: Grundsätzlich schon, das kann man aber noch deutlich vereinfachen zu:
[mm] $\int_0^x \,\bruch{r}{2}\exp(-rt)\, d\lambda$ [/mm]
ist dir das jetzt klar? Wenn nicht, frag nach.

Der zweite Summand ist falsch, insbesondere die zweite Summe, aber lösen wir das mal langsam auf: Wir hatten
$ [mm] \summe_{k=1}^{\infty}\integral_{-\infty}^{\infty} \,1_{(-\infty,x] \cap \IN}(t) \bruch{3}{t^2 \pi^2}\, d\delta_k(t)$ [/mm]
Das schreiben wir erst mal wieder als:
$ [mm] \summe_{k=1}^{\infty}\integral_{0}^{x} \, \bruch{3}{t^2 \pi^2}\, d\delta_k(t)$ [/mm] (also den ursprünglichen Ausdruck).

Nun hatten wir oben ja bereits erwähnt, dass "aus Sicht von [mm] $\delta_k$" [/mm] gilt: $f(t) [mm] \equiv \bruch{3}{k^2 \pi^2}$ [/mm]
Es sei nochmal extra darauf hingewiesen, dass auf der rechten Seite ein konstanter Wert steht, der nicht mehr von $t$ abhängt! Das $k$ rechts ist dasselbe wie in [mm] $\delta_k$! [/mm]

D.h. wir erhalten:
$ [mm] \summe_{k=1}^{\infty}\integral_{0}^{x} \,\bruch{3}{k^2 \pi^2}\, d\delta_k(t) [/mm] = [mm] \summe_{k=1}^{\infty} \bruch{3}{k^2 \pi^2}\integral_{0}^{x} d\delta_k(t) [/mm] $
Nun ist aber [mm] $\integral_{0}^{x} d\delta_k(t) [/mm] = 0$ falls $x < k$ und 1 sonst, d.h. wir erhalten:
$ [mm] \summe_{k=1}^{\lfloor x \rfloor} \bruch{3}{k^2 \pi^2}$ [/mm] für den zweiten Summanden.


>  Und wenn ja, dann würde ich jetzt versuchen die
> Funktionen in den beiden Integrale als Treppenfunktion
> darzustellen, damit wir die Integrale leicht ausrechnen können.

Viel zu kompliziert!
Nun nutze, was du über den Zusammenhang von Lebesgue- zu Riemann-Integralen weißt und berechne das erste Integral einfach wie ein normales (uneigentliches) Riemannintegral, der zweite Summand hat kein Integral mehr, sondern sollte der Anfang einer bekannten Reihe für dich darstellen :-)

Gruß,
Gono


Bezug
                                
Bezug
Verteilungsfunktion berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 Sa 21.10.2017
Autor: mathstu

Hallo Gono,

>  Wie habt ihr denn den Erwartungswert definiert? Dieser ist
> ja normalerweise selbst ein Maßintegral... Und der
> Erwartungswert ist linear im Integranden, das ist aber
> etwas anderes.

Ja, ich habe mich da bei der Argumentation geirrt. Wir haben das Integral in 3 Schritten definiert: Zuerst für nicht-negative Treppenfunktionen, dann für nicht-negative Funktionen und schließlich für allgemeine Funktionen. Folgt die Linearität des Integrals im Maß selbst nicht einfach durch die Konstruktion des Integrals? Dann wäre ja bei dem ersten Schritt
[mm] $\integral_{\Omega}{f(x) d(\mu_1+\mu_2}=\summe_{k=1}^{n}\phi_k(\mu_1+\mu_2)(A_k)=\summe_{k=1}^{n}\phi_k(\mu_1(A_k)+\mu_2(A_k))=\summe_{k=1}^{n}\phi_k\mu_1(A_k)+\summe_{k=1}^{n}\phi_k\mu_2(A_k) [/mm] und für die nächsten Schritte würde die Argumentation dann analog gelten.


> Zum ersten Summanden: Grundsätzlich schon, das kann man
> aber noch deutlich vereinfachen zu:
>  [mm]\int_0^x \,\bruch{r}{2}\exp(-rt)\, d\lambda[/mm]
>  ist dir das
> jetzt klar? Wenn nicht, frag nach.

Ja, das habe ich jetzt verstanden, vielen Dank!



> Der zweite Summand ist falsch, insbesondere die zweite
> Summe, aber lösen wir das mal langsam auf: Wir hatten
>  [mm]\summe_{k=1}^{\infty}\integral_{-\infty}^{\infty} \,1_{(-\infty,x] \cap \IN}(t) \bruch{3}{t^2 \pi^2}\, d\delta_k(t)[/mm]
>  
> Das schreiben wir erst mal wieder als:
> [mm]\summe_{k=1}^{\infty}\integral_{0}^{x} \, \bruch{3}{t^2 \pi^2}\, d\delta_k(t)[/mm]
> (also den ursprünglichen Ausdruck).
>  
> Nun hatten wir oben ja bereits erwähnt, dass "aus Sicht
> von [mm]\delta_k[/mm]" gilt: [mm]f(t) \equiv \bruch{3}{k^2 \pi^2}[/mm]
> Es sei nochmal extra darauf hingewiesen, dass auf der
> rechten Seite ein konstanter Wert steht, der nicht mehr von
> [mm]t[/mm] abhängt! Das [mm]k[/mm] rechts ist dasselbe wie in [mm]\delta_k[/mm]!
>  
> D.h. wir erhalten:
>  [mm]\summe_{k=1}^{\infty}\integral_{0}^{x} \,\bruch{3}{k^2 \pi^2}\, d\delta_k(t) = \summe_{k=1}^{\infty} \bruch{3}{k^2 \pi^2}\integral_{0}^{x} d\delta_k(t)[/mm]
> Nun ist aber [mm]\integral_{0}^{x} d\delta_k(t) = 0[/mm] falls [mm]x < k[/mm]
> und 1 sonst, d.h. wir erhalten:
>  [mm]\summe_{k=1}^{\lfloor x \rfloor} \bruch{3}{k^2 \pi^2}[/mm] für
> den zweiten Summanden.
>  
>
> >  Und wenn ja, dann würde ich jetzt versuchen die

> > Funktionen in den beiden Integrale als Treppenfunktion
> > darzustellen, damit wir die Integrale leicht ausrechnen
> können.
> Viel zu kompliziert!
>  Nun nutze, was du über den Zusammenhang von Lebesgue- zu
> Riemann-Integralen weißt und berechne das erste Integral
> einfach wie ein normales (uneigentliches) Riemannintegral,
> der zweite Summand hat kein Integral mehr, sondern sollte
> der Anfang einer bekannten Reihe für dich darstellen :-)

Insgesamt erhalten wir also
[mm] $F_{P_r}(x)=\integral_{0}^{x}{\bruch{r}{2}exp(-rt)d\lambda(t)}+\bruch{3}{\pi^2}\summe_{k=1}^{\lfloor x \rfloor}\bruch{1}{k^2}$. [/mm]
Nach unsere Vorlesung stimmen Lebesgue- und Riemann-Integral überein, wenn die Menge der Unstetigkeitsstellen eine Lebesgue-Nullmenge ist, was ja in unserem Fall erfüllt ist. Also können wir das Integral folgendermaßen berechnen:
[mm] $\bruch{r}{2}\integral_{0}^{x}{exp(-rt)d\lambda(t)}=\bruch{r}{2}\left[-\bruch{1}{r}exp(-rt)\right]^{x}_{0}=\bruch{1}{2}(1-exp(-rt))$. [/mm]

Und bei Aufgabenteil (ii) folgt dann die Behauptung mit der Aussage [mm] $\summe_{k=1}^{\infty}\bruch{1}{k^2}=\bruch{\pi^2}{6}$. [/mm]


Ich hoffe meine letzten Überlegungen sind jetzt richtig.
Vielen Dank nochmal für die Hilfe, das hat mir sehr geholfen die Aufgabe besser zu verstehen!


VG; mathstu

Bezug
                                        
Bezug
Verteilungsfunktion berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Sa 21.10.2017
Autor: Gonozal_IX

Hiho,

> Ja, ich habe mich da bei der Argumentation geirrt. Wir
> haben das Integral in 3 Schritten definiert: Zuerst für
> nicht-negative Treppenfunktionen, dann für nicht-negative
> Funktionen und schließlich für allgemeine Funktionen.

Das ist auch der Standardweg.
Und als Tipp: Auch ein guter Ansatz für Beweise ;-)

> Folgt die Linearität des Integrals im Maß selbst nicht
> einfach durch die Konstruktion des Integrals? Dann wäre ja
> bei dem ersten Schritt
> [mm]$\integral_{\Omega}{f(x) d(\mu_1+\mu_2}=\summe_{k=1}^{n}\phi_k(\mu_1+\mu_2)(A_k)=\summe_{k=1}^{n}\phi_k(\mu_1(A_k)+\mu_2(A_k))=\summe_{k=1}^{n}\phi_k\mu_1(A_k)+\summe_{k=1}^{n}\phi_k\mu_2(A_k)[/mm]
> und für die nächsten Schritte würde die Argumentation
> dann analog gelten.

[ok]


> Insgesamt erhalten wir also
> [mm]F_{P_r}(x)=\integral_{0}^{x}{\bruch{r}{2}exp(-rt)d\lambda(t)}+\bruch{3}{\pi^2}\summe_{k=1}^{\lfloor x \rfloor}\bruch{1}{k^2}[/mm].

[ok]

> Nach unsere Vorlesung stimmen Lebesgue- und
> Riemann-Integral überein, wenn die Menge der
> Unstetigkeitsstellen eine Lebesgue-Nullmenge ist, was ja in
> unserem Fall erfüllt ist. Also können wir das Integral
> folgendermaßen berechnen:
>  
> [mm]\bruch{r}{2}\integral_{0}^{x}{exp(-rt)d\lambda(t)}=\bruch{r}{2}\left[-\bruch{1}{r}exp(-rt)\right]^{x}_{0}=\bruch{1}{2}(1-exp(-rt))[/mm].

[ok]
edit: Hier noch eine Frage: Hattet ihr den Satz nur für kompakte Intervalle der Form $[k,k+1]$ oder auch für [mm] $[0,\infty)$? [/mm]
  

> Und bei Aufgabenteil (ii) folgt dann die Behauptung mit der
> Aussage
> [mm]\summe_{k=1}^{\infty}\bruch{1}{k^2}=\bruch{\pi^2}{6}[/mm].

[ok]

Gruß,
Gono


Bezug
                                                
Bezug
Verteilungsfunktion berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Sa 21.10.2017
Autor: mathstu

Hallo,

>  > Nach unsere Vorlesung stimmen Lebesgue- und

> > Riemann-Integral überein, wenn die Menge der
> > Unstetigkeitsstellen eine Lebesgue-Nullmenge ist, was ja in
> > unserem Fall erfüllt ist. Also können wir das Integral
> > folgendermaßen berechnen:
>  >  
> >
> [mm]\bruch{r}{2}\integral_{0}^{x}{exp(-rt)d\lambda(t)}=\bruch{r}{2}\left[-\bruch{1}{r}exp(-rt)\right]^{x}_{0}=\bruch{1}{2}(1-exp(-rt))[/mm].
>  [ok]
>  edit: Hier noch eine Frage: Hattet ihr den Satz nur für
> kompakte Intervalle der Form [mm][k,k+1][/mm] oder auch für
> [mm][0,\infty)[/mm]?
>    

Wir haben hatten die Aussage auch für [mm][0,\infty)[/mm], aber die Aussage für ein abgeschlossenes Intervall würde hier doch auch ausreichen oder übersehe ich etwas?

VG, mathstu

Bezug
                                                        
Bezug
Verteilungsfunktion berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 So 22.10.2017
Autor: Gonozal_IX

Hiho,

> Wir haben hatten die Aussage auch für [mm][0,\infty)[/mm], aber die
> Aussage für ein abgeschlossenes Intervall würde hier doch
> auch ausreichen oder übersehe ich etwas?

So lange du nur bis x integrierst, ja. Bis unendlich müsste man das dann nur anders aufschreiben (die [mm] $\lambda$-Maße [/mm] nicht zusammenziehen), aber letztendlich ändert das nix.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de