www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Verteilungsfunktionen
Verteilungsfunktionen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Do 07.05.2009
Autor: Fry

Aufgabe
(1) [mm] f\circ [/mm] F und [mm] F\circ [/mm] g sind Verteilungsfunktionen, wenn f: [mm] [0,1]\to[0,1] [/mm] und g: [mm] \IR\to\IR [/mm] stetig,surjektiv und monoton steigend sind und F eine Verteilungsfkt ist.

(2) Ist [mm] h:[0,1]x[0,1]\to[0,1] [/mm] stetig,surjektiv und schwach monoton (d.h. [mm] x_{1}\le x_{2},y_{1}\le y_{2}\Rightarrow h(x_{1},y_{1})\le h(x_{2},y_{2}) [/mm] und F,G Verteilungsfkten, dann ist [mm] h\circ [/mm] (F,G) eine Verteilungsfkt

Hallo alle zusammen,

ich hab mir mal ein paar Gedanken zu der Aufgabe gemacht, bin mir aber überhaupt nichtsicher, ob das so stimmt. Wäre toll, wenn sich jemand das mal ansehen könnte.

Zu a)Für [mm] f\circ [/mm] F: I. ZZ: [mm] \limes_{x\rightarrow\infty} (f\circ [/mm] F)(x)=1

[mm] \limes_{x\rightarrow\infty} (f(F(x))=f(\limes_{x\rightarrow\infty}F(x))=f(1)=1. [/mm]
Das erste "=",weil f rechtsseitig stetig ist (?), das vorletzte, weil F Verteilungsfkt ist mit [mm] F(\infty)=1 [/mm] und das letzte "=", denn f ist surjektiv,monoton steigend und stetig.

II:Analog zeigt man [mm] f(F(-\infty))=0. [/mm]
III. F rechtsseitig stetig, f stetig [mm] \Rightarrow f\circ [/mm] F rechtsseitig stetig.
Ist das klar, oder wie könnte man das mit Formeln begründen?
IV. [mm] f\circ [/mm] F monoton, da:
[mm] x_{1}
zu b)
I.Wie kann man das hier mit der rechtsseitigen Stetigkeit zeigen?
II. [mm] \limes_{x\rightarrow\infty}\limes_{y\rightarrow\infty}(h((F(x),G(y)) [/mm]
[mm] =\limes_{x\rightarrow\infty}h((F(x),1)=h((1,1))=1, [/mm]
stimmt das ?

Wäre toll, wenn ihr mir Feedback geben könntet. Danke !
Viele Grüße
Christian

        
Bezug
Verteilungsfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Do 07.05.2009
Autor: felixf

Moin Christian!

> (1) [mm]f\circ[/mm] F und [mm]F\circ[/mm] g sind Verteilungsfunktionen, wenn
> f: [mm][0,1]\to[0,1][/mm] und g: [mm]\IR\to\IR[/mm] stetig,surjektiv und
> monoton steigend sind und F eine Verteilungsfkt ist.
>  
> (2) Ist [mm]h:[0,1]x[0,1]\to[0,1][/mm] stetig,surjektiv und schwach
> monoton (d.h. [mm]x_{1}\le x_{2},y_{1}\le y_{2}\Rightarrow h(x_{1},y_{1})\le h(x_{2},y_{2})[/mm]
> und F,G Verteilungsfkten, dann ist [mm]h\circ[/mm] (F,G) eine
> Verteilungsfkt
>  Hallo alle zusammen,
>  
> ich hab mir mal ein paar Gedanken zu der Aufgabe gemacht,
> bin mir aber überhaupt nichtsicher, ob das so stimmt. Wäre
> toll, wenn sich jemand das mal ansehen könnte.
>  
> Zu a)Für [mm]f\circ[/mm] F: I. ZZ: [mm]\limes_{x\rightarrow\infty} (f\circ[/mm]
> F)(x)=1
>  
> [mm]\limes_{x\rightarrow\infty} (f(F(x))=f(\limes_{x\rightarrow\infty}F(x))=f(1)=1.[/mm]
>  
> Das erste "=",weil f rechtsseitig stetig ist (?),

Stetigkeit von $f$ reicht voellig ;-)

> das
> vorletzte, weil F Verteilungsfkt ist mit [mm]F(\infty)=1[/mm]

Fuer Verteilungsfunktionen gilt ja immer [mm] $\lim_{x\to\infty} [/mm] F(x) = 1$. Aber [mm] $F(\infty)$ [/mm] ist nicht definiert.

> und
> das letzte "=", denn f ist surjektiv,monoton steigend und
> stetig.

Genau. Wobei du stetig hier nicht brauchst (das folgt uebrigens schon aus monoton steigend und surjektiv).

> II:Analog zeigt man [mm]f(F(-\infty))=0.[/mm]

Du musst zeigen [mm] $\lim_{x\to-\infty} [/mm] f(F(x)) = 0$, [mm] $f(F(-\infty))$ [/mm] ist nicht definiert.

>  III. F rechtsseitig stetig, f stetig [mm]\Rightarrow f\circ[/mm] F
> rechtsseitig stetig.
>  Ist das klar, oder wie könnte man das mit Formeln
> begründen?

Das ist schon ok so.

>  IV. [mm]f\circ[/mm] F monoton, da:
>  [mm]x_{1}

Genau. Die Verkettung von zwei monoton steigenden Funktionen ist wieder monoton steigend.

> zu b)
>  I.Wie kann man das hier mit der rechtsseitigen Stetigkeit
> zeigen?

Im mehrdimensionalen Fall muss die Verteilungsfunktion rechtsseitig stetig in jeder Variablen sein: d.h. du haelst alle Variablen fest bis auf eine, und dort betrachtest du den Limes von rechts. Also im Prinzip genauso wie oben.

>  II.
> [mm]\limes_{x\rightarrow\infty}\limes_{y\rightarrow\infty}(h((F(x),G(y))[/mm]
>  [mm]=\limes_{x\rightarrow\infty}h((F(x),1)=h((1,1))=1,[/mm]
>  stimmt das ?

Ja.

LG Felix


Bezug
                
Bezug
Verteilungsfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:28 Fr 08.05.2009
Autor: Fry

Hey Felix !

Danke mal wieder für deine Unterstützung =).

Beste Grüße
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de