www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Verteilungsfunktionen
Verteilungsfunktionen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktionen: verteilung, Fragen
Status: (Frage) beantwortet Status 
Datum: 19:40 Do 20.05.2010
Autor: schnecke-90

Aufgabe
Welche der folgenden Funktionen sind eine Verteilungsfunktion?




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Hallo,
Meine Aufgabenideen  zu den Aufgaben im Link
http://www.fotos-hochladen.net/big/t25ay6ns57j.jpg


a. [mm] \limes_{x\rightarrow\ (-)infty} [/mm] für [mm] x\to [/mm]  0 für F(x)
b [mm] .\limes_{x\rightarrow\infty} [/mm] für [mm] x\to [/mm]  1 für F(x)
c. [mm] 0\le [/mm] F(x) [mm] \le1 [/mm]
d. [mm] x1\le [/mm] x2
e. F(x+)=F(x), wobei ich mit dem Ausdruck nichts anfangen kann.
f. [mm] F(x1)\le [/mm] F(x2)

Bei den ersten 3 funktionen meine ich, dass die ersten 4 Sachen stimmen, wenn ich es richtig verstanden habe, zur 5 und habe ich keine Idee und bei 6 würde ich auch sagen, sie stimmen.

Bei der letzten Funktion habe kann ich zwar sagen, dass die ersten 3 Sachen passen, aber danach weiß ich es nicht.

ich würde mich also über eure Hilfe freuen und vielleicht gibt es ja auch noch mehr sachen, woran ich das festmachen kann. Danke euch


das ist aber hier, so wie das sehe bei allen Fkt gegeben
auch ist gegeben, dass aber einem bestimmten Funktionswert die Funktion 1 annimmt, weil x dann so klein wird, das es keine Auswirkung mehr hat, aber trotzdem muss es ja noch weitere Sachen geben, oder? Würde mich freune, wenn mir jemand hilft.
Danke


        
Bezug
Verteilungsfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Sa 22.05.2010
Autor: steppenhahn

Hallo!

Schau dir []hier an, welche drei Eigenschaften eine Verteilungsfunktion besitzen muss! (Mehr Eigenschaften braucht sie nicht zu haben!)

Der Ausdruck F(x+) = F(x) sollte gerade andeuten, dass F rechtsseitig stetig ist.
Beispielsweise ist die Indikatorfunktion [mm] 1_{[0,1)} [/mm] rechtsseitig stetig in 1, aber nicht linksseitig stetig in 1.

Die Eigenschaft, dass [mm] $\lim_{x\to\infty}F(x) [/mm] = 1$ und [mm] $\lim_{x\to -\infty}F(x) [/mm] = 0$ scheint bei all deinen Beispielen erfüllt zu sein.

Du musst also noch überprüfen, ob die Funktionen monoton wachsend sind und rechtsseitig stetig.

Nach kurzem Drüberschauen hier meine Ideen:
(a) scheint okay zu sein (also eine Verteilungsfunktion)
(b) Rechtsseitige Stetigkeit anschauen!
(c) Monotonie anschauen!
(d) scheint okay zu sein

Du musst aber alles nachrechnen!

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de