www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Vertikaler Wurf
Vertikaler Wurf < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vertikaler Wurf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:43 Mi 10.11.2010
Autor: Theoretix

Aufgabe
Zwei Gegenstände werden mit gleicher Anfangsgeschwindigkeit v0, aber im zeitlichen Abstand t0, im Gravitationsfeld der Erde senkrecht nach oben geworfen.

Nach welcher Zeit tc treffen sich die beiden Steine?

Hallo,

Die Bewegungsgleichungen (nur in z-Richtung relevant)

lauten ja:

Gegenstand 1: [mm] z(t)=-\bruch{1}{2}gt_{0}^2+v_{0}t_{0}+r_{0}, [/mm]
wobei wir [mm] r_{0}=0 [/mm] annehmen, da von h=0 aus geworfen wird.

Der zweite Gegenstand fliegt Zeitvezögert mit einer Verzögerung:

[mm] t_{0}+\Delta [/mm] t, also mit

Gegenstand 2: [mm] z(t)=-\bruch{1}{2}g(t_{0}+\Delta t)^2+v_{0}(t_{0}+\Delta [/mm] t)

Wenn sich die Gegenstände treffen, haben sie natürlich dieselbe Höhe, also setzt man die Bewegungsgleichungen gleich:

[mm] z(t)=-\bruch{1}{2}gt_{0}^2+v_{0}t_{0}=-\bruch{1}{2}g(t_{0}+\Delta t)^2+v_{0}(t_{0}+\Delta [/mm] t)

Jetzt kann ich auf beiden Seiten „ [mm] -\bruch{1}{2}g [/mm] „wegkürzen und [mm] (t_{0}+\Delta t)^2 [/mm] auflösen und erhalte:


[mm] v_{0}t_{0}=t_{0}^2+2(t_{0}\Delta t)+t_{0}^2+v_{0}t_{0}+v_{0}\Delta [/mm] t   (oder?)

Jetzt kann ich auf beiden Seiten [mm] t_{0}^2+v_{0}t_{0} [/mm] weggkürzen, aber welches t liefert mir nun mein gesuchtes [mm] t_{c}, [/mm] bin ein wenig durcheinander gekommen...oder habe ich einen Rechenfehler?

Liebe Grüße

        
Bezug
Vertikaler Wurf: falsch zusammengefasst
Status: (Antwort) fertig Status 
Datum: 00:50 Mi 10.11.2010
Autor: Loddar

Hallo Theoretix!


> Gegenstand 1: [mm]z(t)=-\bruch{1}{2}gt_{0}^2+v_{0}t_{0}+r_{0},[/mm]
>  wobei wir [mm]r_{0}=0[/mm] annehmen, da von h=0 aus geworfen wird.

[ok]


> Der zweite Gegenstand fliegt Zeitvezögert mit einer
> Verzögerung:
>  
> [mm]t_{0}+\Delta[/mm] t, also mit
>
> Gegenstand 2: [mm]z(t)=-\bruch{1}{2}g(t_{0}+\Delta t)^2+v_{0}(t_{0}+\Delta[/mm] t)

[ok]


> Wenn sich die Gegenstände treffen, haben sie natürlich
> dieselbe Höhe, also setzt man die Bewegungsgleichungen
> gleich:
>  
> [mm]z(t)=-\bruch{1}{2}gt_{0}^2+v_{0}t_{0}=-\bruch{1}{2}g(t_{0}+\Delta t)^2+v_{0}(t_{0}+\Delta[/mm] t)

[ok]


> Jetzt kann ich auf beiden Seiten „ [mm]-\bruch{1}{2}g[/mm]  „wegkürzen und [mm](t_{0}+\Delta t)^2[/mm]
> auflösen und erhalte:

[notok] Wie das? Du solltest erst die Klammern auf der rechten Seite ausmultiplizieren und dann zusammenfassen.

Es verbleibt nur noch ein Term mit [mm]t_0[/mm] .


Gruß
Loddar


Bezug
                
Bezug
Vertikaler Wurf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Mi 10.11.2010
Autor: Theoretix

habe jetzt mal die rechte Seite ausgerechnet und zusammen gefasst:

[mm] -\bruch{1}{2}gt_{0}^2+v_{0}t_{0}=\bruch{1}{2}gt_{0}^2-gxt_{0}\Delta t-\bruch{1}{2}g\Delta t^2+v_{0}t_{0}+v_{0}\Delta [/mm] t  (?)

Jetzt kann ich doch „+ [mm] \bruch{1}{2}gt_{0}^2“ [/mm] auf beiden Seiten, dann ist der Term schonmal weg (?)

[mm] „-V_{0}t_{0}“ [/mm] auf beiden Seiten, dann ist der Term auch weg.

jetzt könnte ich noch [mm] \Delta [/mm] t ausklammern und erhalte:

[mm] 0=\Delta t(-gt_{0}-\bruch{1}{2}g\Delta t-V_{0}) [/mm] ....irgendwie muss wieder was schief gelaufen sein?

Welche Variable gibt mir denn nun meine gesuchte Zeit [mm] t_{c}, [/mm] bei der sich beide Steine treffen?...=(

Liebe Grüße

Bezug
                        
Bezug
Vertikaler Wurf: Antwort
Status: (Antwort) fertig Status 
Datum: 22:05 Mi 10.11.2010
Autor: leduart

Hallo
1. du schreibst beim zweiten [mm] t+\Delta [/mm] t. das gilt aber für den ersten, weil der zweite ja später losfliegt. oder der zweite bei [mm] t-\Delta [/mm] t
[mm] s_2(\Delta [/mm] t)=0
Das ändert aber an deiner Rechnung wenig, die Wege müssen gleich bleiben.
Nur die Zeit die du ausrechnest ist mit dem [mm] t-\Delta [/mm] t in [mm] s_2 [/mm] die Zeit die der erste Ball unterwegs ist, mit [mm] t+\Delta [/mm] t di Zeit des zweiten.
Warum du [mm] t_0 [/mm] für den ersten geschreiben hast statt einfach t weiß ich nicht, dadurch weisst du am Schluss nicht mehr, was du ausrechnen willst.
ich lass den ersten bei t=0 losfliegen, den zweiten dt später, seine Zeit ist dann t-dt
also [mm] s_1(t)=-g/2*t^2+v_0*t [/mm]
[mm] s_2(t)=-g/2*(t-dt)^2+v_0*(t-dt) [/mm]
[mm] s_2=s_1 [/mm] bei [mm] t=t_b [/mm]
[mm] 0=g/2*dt^2+g*t_b*dt-v_0*dt [/mm]
daraus folgt [mm] t_b=... [/mm]
damit kannst du zur Probe dann [mm] s_1 [/mm] und [mm] s_2 [/mm] ausrechnen, wenn du willst auch mit welcher Geschw. sie sich treffen.
Gruss leduart


Bezug
                                
Bezug
Vertikaler Wurf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:15 Mi 10.11.2010
Autor: Theoretix

Danke für die Antwort!
Aber mir ist noch unklar:

Der zweite fliegt zu einem späteren Zeitpunkt los. Wenn man sagt der Zeitpunkt, an dem der erste losfliegt ist t0 und der zweite fliegt um dt später los, fliegt der zweite doch eben um t+dt los? Warum denn t-dt?
Das verstehe ich nicht.

Gruß

Bezug
                                        
Bezug
Vertikaler Wurf: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 Mi 10.11.2010
Autor: leduart

Hallo
so wie du geschrieben hast ist [mm] t_0=0 [/mm]
was vor t=0 war weiss man ja nicht.
wenn 1 bei [mm] t=t_0\ne [/mm] 0 losfliegt, ist die Zeit in der [mm] v_0 [/mm] und g wirkt dit Zeit [mm] t-t_0. [/mm]
Wenn du um 0 Uhr losläufst, 1 Stunde mit 8km/h, dein Freund läuft 1/4 h später los. welche Strecke hat dein Freund dann um 0.15 Uhr zurückgelegt, welche um 1Uhr, wenn du bei 8km bist?
2 fliegt  richtig bei 0+dt oder auch bei [mm] t_0+dt [/mm] los, aber wenn ich jetzt seinen Weg in Abh. von der Zeit angebe, dann hat er doch zu jedem Zeitpunkt weniger und nicht mehr Zeit unterwegs verbracht als 1.
Setz doch mal die Zeit [mm] t=\Delta [/mm] t (oder [mm] t_0+dt [/mm] in Deine gl für 2 ein, dann ist er ja weiter als 1 zur Zeit [mm] \Delta [/mm] t
zur Zeit [mm] t_0 [/mm] statt bei 0 anzufangen bringt dir nur unnötige Buchstaben in deine Gleichung. Das "Experiment ist doch dasselbe, ob du um 4.17Uhr oder 17.40Uhr oder 0.00Uhr anfängst? deshalb setzt man die Zeit zum Anfang eines Experiments oder Gedankenexp. immer auf 0.
Wenn man dann 17s misst ist es dann eben hinterher 4.17 und 17s oder 17.40 und 17s usw!
also lass [mm] t_0 [/mm] aus dem Spiel



Bezug
        
Bezug
Vertikaler Wurf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:08 Fr 12.11.2010
Autor: Theoretix

Aufgabe
b) Wie groß sind dann ihre Geschwindigkeiten?

(Wenn die beiden Steine sich treffen)

Hallo zusammen,


zunächst habe ich für Teilaufgabe a also die Zeit bei der sie sich treffen raus:


[mm] t_{b}=\bruch{1}{2}dt+\bruch{V_{0}}{g} [/mm]  (?)
Jetzt muss ich diese Zeit doch nur noch in die Geschwindigkeitsgleichung:

[mm] V(t)=at+V_{0}=-gt+V_{0} [/mm] einsetzen:

[mm] V(t_{b})=-g(\bruch{1}{2}dt+\bruch{V_{0}}{g})+V_{0} [/mm]

Wenn ich jetzt mit -g ausmultipliziere, kann ich in einem Term das g kürzen und erhalte:

[mm] -\bruch{1}{2}g dt-V_{0}+V_{0}=-\bruch{1}{2}g [/mm] dt

Ist das richtig, oder habe ich mich irgendwo vertan?

Bezug
                
Bezug
Vertikaler Wurf: Antwort
Status: (Antwort) fertig Status 
Datum: 01:59 Fr 12.11.2010
Autor: leduart

Hallo
das ist die richtige Geschw. für den ersten Stein, der zweite muss in derselben Höhe (energiesatz) denselben betrag von v haben (aber umgekehrtes Vorzeichen).
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de