www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Vertrauensintervall
Vertrauensintervall < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vertrauensintervall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:57 Mo 27.08.2012
Autor: Kuriger

Folgendes Experiment soll herauszufinden erlauben, ob aussersinnliche Wahrnehmungen existiert. Zwanzig mal wird einer Versuchsperson in einem Web-Browser  die Wahl zwischen zwei Fenstern angeboten. Die Versuchsperson soll vorhersagen, in welchem Fenster ein Bild erscheinen wird. Es wird gezählt, wie oft die Versuchsperson das Fenster richtig vorhersagt.

a) Wieviele male muss die Versuchsperson richtig vorhersagen, damit man behaupten kann, es gäbe aussersinnliche Kräfte.

Also gemäss Lösung wurde diese Aufgabe mit einer Normalverteilung gelöst.
Es wurde das vertrauensintervall [mm] \alpha [/mm] = 0.05 gewählt.
d. h. [mm] x_{kritisch} [/mm] = [mm] \mu [/mm] + 1.6449 * [mm] \sigma [/mm]

Ich frage mich gerade, ob man da wirklich die Normalverteilung anwenden kann. Bei Wikipedia steht glaub was von n = 50, damit sich das ganze einer Normalverteilung annähert?



        
Bezug
Vertrauensintervall: Näherung
Status: (Antwort) fertig Status 
Datum: 18:43 Mo 27.08.2012
Autor: Infinit

Hallo Kuriger,
ja, eigentlich müsstest Du mit einer Binomialverteilung arbeiten, aber die Näherung ist durchaus über die Normalverteilung erlaubt. schau mal in Wikupedia nach unter der Binomialverteilung und dem Übergang zur Normalverteilung. Dies geht mit [mm] p = q = 1/2 [/mm], denn
[mm] np > 4 [/mm] und
[mm] nq > 4 [/mm] ist mit dem Wert 10 erfüllt.

Viele Grüße,
Infinit


Bezug
                
Bezug
Vertrauensintervall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:18 Mo 27.08.2012
Autor: Kuriger

Hallo

Aber n * p = 20 * 0.5 = 10, und nicht 5, oder?

Und wie könnte man die Aufgabe über die Binomialverteilung lösen?
geht wohl nicht einfach so einfach? Müsste ich unterschiedliche k durchprobieren?
z. B. k = 13
[mm] \vektor{20 \\ 13} [/mm] * [mm] 0.5^{13} [/mm] * (1 - [mm] 0.5)^{20 - 13} [/mm] = 0.0739
rauskommen sollte aber 0.05 (festgelegte Kondidenzintervall), also erhöhe ich k bisschen...


Gruss Kuriger

Bezug
                        
Bezug
Vertrauensintervall: Antwort
Status: (Antwort) fertig Status 
Datum: 08:12 Di 28.08.2012
Autor: luis52


> Und wie könnte man die Aufgabe über die
> Binomialverteilung lösen?
>  geht wohl nicht einfach so einfach? Müsste ich
> unterschiedliche k durchprobieren?

Ja.

>  z. B. k = 13
>  [mm]\vektor{20 \\ 13}[/mm] * [mm]0.5^{13}[/mm] * (1 - [mm]0.5)^{20 - 13}[/mm] =
> 0.0739

[notok] [mm] $\sum_{k=13}^{20}\binom{20}{k}0.5^k0.5^{20-k}=0.1316$, $\sum_{k=14}^{20}\binom{20}{k}0.5^k0.5^{20-k}=0.05766$, [/mm] ...


>  rauskommen sollte aber 0.05 (festgelegte
> Kondidenzintervall), also erhöhe ich k bisschen...

  
Auf diese Weise wirst du nur ganz selten ein $k_$ finden, was genau [mm] $\alpha=0.05$ [/mm] liefert (Konfidenz*niveau*, nicht -intervall).

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de