Verzinsung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:42 Mi 26.10.2011 | Autor: | Pruckcy |
Aufgabe | a) Bei kontinuierlicher Verzinsung ist die Zuwachsrate des Kapitals proportional zu der Größe des Kapitals. Der Proportionalitätsfaktor p heißt (kontinuierlicher) Zinssatz. Formulieren und lösen Sie die Anfangswertaufgabe für das Kapital K als Funktion der Zeit t (gemessen in Jahren), wenn das Anfangskapital A ist.
b) Bei jährlicher Verzinsung mit dem Zinssatz z erhöht sich am Ende des Jahres das Kapital um z mal seine Größe zu Beginn des Jahres. Wie groß ist das Kapital nach t Jahren?
c) Bei monatlicher Verzinsung erhöhe sich am Ende jedes Monats das Kapital um [mm] \bruch{z}{12} [/mm] mal seine Größe zu Beginn des Monats. Wie groß ist das Kapital nach t Jahren?
d) Wie groß ist das Kapital nach t Jahren, falls n mal im Jahr mit einem Zinssatz von [mm] \bruch{z}{n} [/mm] verzinst wird? Was kann man für n ! 1 beobachten? |
Guten Morgen,
Ich denke die Aufgaben sind nicht so schwer wenn man weiß was man machen muss!
zu der Aufgabe a) habe ich folgende Lösung:
also die Zuwachsrate des Kapitals ist [mm] \bruch{K(t)}{dt}
[/mm]
Also folgt: K'(t)=p*K(t)
diese DGL kann man ganz einfach mit Trennung der Veränderlichen lösen
...
[mm] K(t)=c*e^{pt}
[/mm]
da am Anfang also zum Zeitpunkt t=0 das Kaptal das Startkapital ist folgt:
K(0)=A und daraus folgt:
c=A
somit lautet die Lösung dieser DGL
[mm] K(t)=A*e^{pt}
[/mm]
und bei der b) weiß ich nicht was ich machen soll. Irgendwie schaffe ich es nicht den Text in die mathematik zu übersetzen. Vielleicht kann mir einer von euch einen Tipp geben?
Dankeschön!
|
|
|
|
Hallo,
ich denke, die Aufgabe hat einen bestimmten Background: man soll durch 'Experimentieren' sozusagen von der Existenz des Grenzwertes
[mm] \limes_{n\rightarrow\infty}\left(1+\bruch{1}{n}\right)^n=e
[/mm]
überzeugt werden.
Stelle für die jährliche Verzinsung einfach eine Exponentialfunktion mit der Basis
[mm] a=1+\bruch{p}{100}
[/mm]
auf. Tue das gleiche für die monatliche Verzinsung sowie für die Verzinsung mit einem beliebigen Zeitintervall (natürlich jeweils mit einem anderen Wert für p).
Hilft dir das weiter?
Gruß, Diophant
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:57 Mi 26.10.2011 | Autor: | Pruckcy |
Also wenn ich eine Exponentialfunktion mit der Basis a erstelle bekomme ich doch ganz einfch die Formel die Man bei Zinseszins-Rechnung immer benutzt und zwar ist dann
[mm] K(t)=A*(1+z)^{t}
[/mm]
für den Monat wäre das dann
[mm] K(t)=A*(1+\bruch{z}{12})^{12t} [/mm] weil wir ja eine Monatliche Verzinsung haben
und für eine n fache Verzinsung haben wir dann
[mm] K(t)=A*(1+\bruch{z}{n})^{nt}
[/mm]
und da sieht man dann das der Grenzwert gegen e geht?!?!
Irgendwie kommt mir das ein bisschen komisch vor und ich weiß auch nciht was das mit DGL zu tun hat. Wahrscheinlich muss ich eien DGL aufstellen und die Formeln die oben stehen sind dann das Ergebnis oder so...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:40 Mi 26.10.2011 | Autor: | leduart |
Hallo
für eine nicht kontinuierliche Verzinsung kannst du doch keine Dgl aufstellen, die ja als Lösung eine stetige Kurve ist!
Wenn die Verzinsung monatlich ist, sollte man t auch in Monaten, wenn sie täglich ist t in Tagen angeben.osw.
dann sind die Zinseszinsrechnungen richtig,
für n hast du dann [mm] (1+z/n)^n)^t=(e^z)^t [/mm] für n gegen unendlich
schließlich kann man etwa ausrechnen, wieviel der Unterschied zwischen monatlicher täglicher und jährlicher Verzinsung ist.
Gruss leduart
|
|
|
|