www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Vollkommene Zahlen
Vollkommene Zahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollkommene Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Mi 02.04.2008
Autor: barsch

Hi,

sitze gerade an einer Induktion zum Thema vollkommene Zahlen.

Ich will die Aufgabe, die mich beschäftigt, nicht direkt posten, sondern einmal eine ähnliche Aufgabe, die ich bei Wikipedia gefunden habe, sodass ich das evtl. auf meine Aufgabe transferieren kann.

Hier die Aufgabe:

Zu zeigen: Die Summe der reziproken Teiler einer vollkommenen Zahl n (einschließlich der Zahl selbst) ergibt 2.

[mm] \summe_{k|n}\bruch{1}{k}=2. [/mm]

Als Beispiel:

Für n = 6 gilt: [mm] \bruch{1}{1}+\bruch{1}{2}+\bruch{1}{3}+\bruch{1}{6}=\bruch{12}{6}= [/mm] 2

Wobei k|n, (alle) k, die Teiler von n sind, bedeutet.

Ich würde das mit Induktion machen wollen, weiß jedoch nicht genau wie, da die nächste vollkommene Zahl erst wieder 28 ist, ich aber mit Induktion zeigen würde, dass, wenn es für n=6 gilt, auch für 6+1 gelten muss, aber 6+1 ist ja keine vollkommene Zahl. Was wäre hier die Alternative zur Induktion?

MfG barsch

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Vollkommene Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Mi 02.04.2008
Autor: SEcki


> Was wäre hier die
> Alternative zur Induktion?

Direkt beweisen - also die Summe umformen. Dabei würde ich versuchen die Brüche zu beseitgen. Multiplikation mit n ergibt hier zB sofort die Lösung.

SEcki

Bezug
                
Bezug
Vollkommene Zahlen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:47 Mi 02.04.2008
Autor: barsch

Hi,

danke für die schnelle Antwort.

> Direkt beweisen - also die Summe umformen. Dabei würde ich
> versuchen die Brüche zu beseitgen. Multiplikation mit n
> ergibt hier zB sofort die Lösung.

[mm] \summe_{k|n}\bruch{1}{k}=2. [/mm]

Ich weiß jedoch überhaupt nicht, wie ich hier mit n multiplizieren soll!?

MfG barsch

Bezug
                        
Bezug
Vollkommene Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Mi 02.04.2008
Autor: SEcki


> [mm]\summe_{k|n}\bruch{1}{k}=2.[/mm]
>  
> Ich weiß jedoch überhaupt nicht, wie ich hier mit n
> multiplizieren soll!?

Diese Gleichung mit n multiplizieren! [m]\summe_{k|n}\bruch{n}{k} =2n[/m].

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de