www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Vollständige Induktion
Vollständige Induktion < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Mal wieder die Uni Essen ;)
Status: (Frage) beantwortet Status 
Datum: 09:22 So 30.10.2005
Autor: Eddie9983

Also die Aufgabe heißt so:

Für alle n ≥ 0 und alle reellen Zahlen q gilt:

[mm] \summe_{k=0}^{n} [/mm] a+kq = ((n+1) * (2a+nq) ) /2

Ich weiß, wie ich vorgehe. Ich mache den Beweis für A(1) und stelle dann A(n) => A(n+1) auf. Doch dann muss ich ja eine Gleichung aufstellen. Auf diese komme ich nicht. Wir haben es in der Vorlesung gemacht, aber da habe ich es noch nicht verstanden. Wie komme ich auf diese Gleichung?? Danle


# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständige Induktion: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:32 So 30.10.2005
Autor: Pollux

Der Induktionsanfang ist klar:
Wenn du n=0 setzt steht auf beiden Seiten a=a, und das ist richtig.
Für den Schritt setzt du in deine Gleichung (n+1) erstmal ein und versuchst, deine Induktionsvoraussetzung einzubringen. Du hast dann die Summe von 0 bis n+1. Betrachte die Summe von 0 bis n, die kannst du durch deine Ind.Voraussetzung ersetzen. Der Rest sollte klar sein...

Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:22 So 30.10.2005
Autor: Eddie9983

Ich habe das jetzt mal so gemacht, wie du es gesagt hast.

Nun steht da:

[mm] \summe_{i=k}^{n+1} [/mm] (a) = ((n+2)*2a+q+qn)/2

Aber was nun??

Bezug
        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:45 So 30.10.2005
Autor: Karl_Pech

Hallo Eddie,


> Für alle n ≥ 0 und alle reellen Zahlen q, a gilt:
>
> [mm]\summe_{k=0}^{n}[/mm] a+kq = ((n+1) * (2a+nq) ) /2


Es reicht zu zeigen, daß [mm] $\textstyle\sum_{k=0}^{n}{k} [/mm] = [mm] \frac{n\left(n+1\right)}{2}$ [/mm] ist, was mit vollständiger Induktion (oder direkt) geht (such mal ein Bißchen im Forum oder im Internet danach.) Hast Du das erstmal gezeigt, benutzt Du diese Beziehung:


[mm] $\sum_{k=0}^{n}{\left(a+kq\right)} [/mm] = [mm] \left(\sum_{k=0}^{n}{a}\right)+q\left(\sum_{k=0}^{n}{k}\right) [/mm] = [mm] \underbrace{a+\dotsb+a}_{n+1\text{ mal}}+q\heartsuit$ [/mm]


Für [mm] $\heartsuit$ [/mm] setzt Du die obige durch Induktion bewiese Beziehung ein; Jetzt nur noch in die passende Form bringen.


(Oder hat man euch diese Vorgehensweise explizit verboten?)



Viele Grüße
Karl



Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:20 So 30.10.2005
Autor: Eddie9983

Ich kann doch nicht einfach die Aufgabenstellung verändern...

Bezug
                        
Bezug
Vollständige Induktion: Umformung legitim
Status: (Antwort) fertig Status 
Datum: 12:24 So 30.10.2005
Autor: Loddar

Hallo Eddie!


Du veränderst ja die Aufgabenstellung nicht.

Du wendest lediglich einige Rechenregeln mit dem Summenzeichen an, so dass ich Karl's Tipp als legitim ansehe (es sei denn, es wurde ausdrücklich gemäß Aufgabenstellung untersagt).


Gruß
Loddar


Bezug
                                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:48 So 30.10.2005
Autor: Eddie9983

Naja aus a+kq wird auf einmal k. Aus 2a+nq wird n. Das verstehe ich nicht, warum ihr da einfach die Aufgabe so macht, wie ihr wollt.

Bezug
                                        
Bezug
Vollständige Induktion: schrittweise
Status: (Antwort) fertig Status 
Datum: 14:40 So 30.10.2005
Autor: Loddar

Hallo Eddie!


Machen wir das mal schrittweise ...


[mm] $\summe_{k=0}^{n}\left(a + k*q\right) [/mm] \ = \ [mm] \summe_{k=0}^{n}a [/mm] + [mm] \summe_{k=0}^{n}\left(k*q\right) [/mm] \ = \ [mm] \summe_{k=0}^{n}a [/mm] + [mm] q*\summe_{k=0}^{n}k$ [/mm]


Bis hierher haben wir lediglich das Summenzeichen in mehrere Summen(zeichen) zerlegt sowie das $q_$ vor das Summenzeichen gezogen (ausgeklammert).

Und nun betrachten wir uns die erste Summe etwas genauer.
Hier addieren wir insgesamt $n+1_$-mal ($k \ =\ 0, 1, 2, ..., n$) den Wert $a_$ auf. Es gilt also:

[mm] $\summe_{k=0}^{n}a [/mm] \ = \ [mm] \underbrace{a+ a+a +a ... + a}_{(n+1)-mal} [/mm] \ = \ (n+1)*a$


Und nun brauchst Du lediglich den Ausdruck [mm] $\summe_{k=0}^{n}k$ [/mm] betrachten bzw. nachzuweisen:

[mm] $\summe_{k=0}^{n}k [/mm] \ = \ 0 + 1 + 2 + 3 + ... + n \ = \ [mm] \bruch{n*(n+1)}{2}$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de