www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:08 So 02.10.2016
Autor: cey112

Aufgabe
Zeige mit vollständiger Induktion, dass [mm] x_n = (\bruch{1}{3})^n, n \in \IN_{0} [/mm] für [mm] x_n=\bruch{16}{3}x_{n-1}-\bruch{5}{3}x_{n-2}, n \ge 2 [/mm] mit [mm] x_0=1 [/mm] und  [mm] x_1=\bruch{1}{3} [/mm] gilt.

Hallo, ich hoffe ihr könnt mir bei dieser Aufgabe helfen.

Die einzelnen Schritte der vollständigen Induktion sind mir klar, aber irgendwie komme ich ab dem Induktionsschritt nicht weiter. Ich schreibe mal auf, bis wohin ich es hinbekommen habe:

1. Induktionsanfang: Man zeigt die Behauptung für n = 1 bzw. n = 0
Für [mm] n=0 [/mm] ergibt sich [mm] (\bruch{1}{3})^{0}=0 =x_0[/mm] und für [mm] n=1[/mm]  ergibt sich [mm] (\bruch{1}{3})^{1}=\bruch{1}{3} = x_1[/mm]
War's das schon? Bin mir nicht sicher.

2. Induktionsschritt: Man zeigt die Aussage für [mm]n+1[/mm]
So, hier habe ich Schwierigkeiten. Ich muss zeigen, dass [mm]x_{n+1}=(\bruch{1}{3})^{n+1} [/mm] unter der Voraussetzung, dass [mm] x_n = (\bruch{1}{3})^n [/mm] für ein [mm] n [/mm] bereits bewiesen wurde, also

[mm]x_{n+1}=(\bruch{1}{3})^{n+1} + [/mm] ??? . Hier weiß ich nicht weiter.

Bin über jede Hilfe dankbar.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 So 02.10.2016
Autor: HJKweseleit


> Zeige mit vollständiger Induktion, dass [mm]x_n = (\bruch{1}{3})^n, n \in \IN_{0} [/mm]
> für [mm]x_n=\bruch{16}{3}x_{n-1}-\bruch{5}{3}x_{n-2}, n \ge 2[/mm]
> mit [mm]x_0=1[/mm] und  [mm]x_1=\bruch{1}{3}[/mm] gilt.
>  Hallo, ich hoffe ihr könnt mir bei dieser Aufgabe
> helfen.
>  
> Die einzelnen Schritte der vollständigen Induktion sind
> mir klar, aber irgendwie komme ich ab dem Induktionsschritt
> nicht weiter. Ich schreibe mal auf, bis wohin ich es
> hinbekommen habe:
>  
> 1. Induktionsanfang: Man zeigt die Behauptung für n = 1
> bzw. n = 0
>  Für [mm]n=0[/mm] ergibt sich [mm] (\bruch{1}{3})^{0}=0 =x_0 [/mm]

[notok] Jede Zahl hoch 0 ist 1, selbst [mm] 0^0 [/mm] !  Und [mm] x_0 [/mm] soll ja auch 1 sein.


>  und für
> [mm]n=1[/mm]  ergibt sich [mm](\bruch{1}{3})^{1}=\bruch{1}{3} = x_1[/mm]
>  
> War's das schon? Bin mir nicht sicher.

Ja, der Induktionsanfang ist meistens ganz einfach, aber auch wichtig!

>  
> 2. Induktionsschritt: Man zeigt die Aussage für [mm]n+1[/mm]
>  So, hier habe ich Schwierigkeiten. Ich muss zeigen, dass
> [mm]x_{n+1}=(\bruch{1}{3})^{n+1}[/mm] unter der Voraussetzung, dass
> [mm]x_n = (\bruch{1}{3})^n[/mm] für ein [mm]n[/mm] bereits bewiesen wurde,
> also
>  
> [mm]x_{n+1}=(\bruch{1}{3})^{n+1} +[/mm] ??? .


Ja. Du darfst aber auch benutzen, dass für n-1 gilt:

[mm]x_{n-1} = (\bruch{1}{3})^{n-1}[/mm] für dasselbe n.

Wenn du weißt, dass es z.B. bis n=7 gilt, kannst du es für n+1=8 beweisen, indem du auf n=7 und n-1=6 zurückgreifst.

Bei der Vollst. Ind. geht man im Induktionsschritt davon aus, dass die Eigenschaft von einem [mm] n_0 [/mm] aus bis zu einem [mm] n_1 [/mm] gilt. Dann führt man den Induktionsschritt für [mm] n_1+1 [/mm] durch und darf dabei auf alle Glieder von [mm] n_0 [/mm] bis [mm] n_1 [/mm] zurückgreifen - falls nötig.

Weil die Rekursionsformel 2 Vorgänger enthält, musst du auf beide zurückgreifen. Deshalb mussten auch [mm] x_0 [/mm] UND [mm] x_1 [/mm] vorgegeben werden, weil der Beweis für n=2 auf beide zurückgreift.



Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 So 02.10.2016
Autor: cey112

Ups, an der ersten Stelle habe ich mich vertan. Ich weiß schon das eine beliebige Zahl hoch 0 gleich 1 ist :)

Deine Erklärung mit dem Induktionsschritt kann ich nachvollziehen, weiß aber dennoch nicht, wie ich jetzt weiter vorgehen muss :(

Mir ist hier nicht klar, wie ich die Rekursionsformel in den Induktionsschritt integrieren soll

Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 So 02.10.2016
Autor: leduart

Hallo
schreib die Rekursionsformel fuür [mm] x_{n+1} [/mm] hin, setze die IndVors für n und n-1 ein und rechne nach, dass es [mm] (1/3)^{n+1} [/mm] gibt.
Tip: klammer [mm] 1/3*(1/3)^{n-1} [/mm] aus.
Gruss leduart

Bezug
                                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:41 Mi 05.10.2016
Autor: cey112

Vielen Lieben Dank. Ich probiere es gleich aus :)

Bezug
                                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:41 Fr 07.10.2016
Autor: cey112

Hat funktioniert :) Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de