Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:24 Do 12.10.2006 | Autor: | crash24 |
Aufgabe | Zeigen Sie mit vollständiger Induktion:
[mm]\forall n\in\IN : \summe_{k=1}^{n} k\left( k+1 \right) = \bruch{1}{3}n \left( n+1\right) \left( n+2 \right) [/mm] |
Der Ablauf der vollständigen Induktion ist mir eigentlich ganz klar. Ich habe aber sehr große Probleme mit Termumformungen und mit dem Auflösen von Klammern. Daher komme ich beim Induktionsschluss teilweise nicht weiter.
Hier sind meine Ansätze:
Induktionsverankerung: [mm] n=1[/mm]
[mm] \summe_{k=1}^{1} k\left( k+1 \right) = 2 = \bruch{1}{3}*1 \left( 1+1\right) \left( 1+2 \right) = 2 [/mm]
Für [mm]n=1[/mm] gilt die Aussage
Induktionsschritt:
Induktionssannahme:
Es gibt ein beliebiges [mm] n\in\IN [/mm] für das die Aussage wahr ist, d.h. das
[mm] \summe_{k=1}^{n} k\left( k+1 \right) = \bruch{1}{3}n \left( n+1\right) \left( n+2 \right) [/mm]
gilt.
Induktionssschluss:
z. zeigen:
[mm] \summe_{k=1}^{n+1} k\left( k+1 \right) = \bruch{1}{3}\left( n+1\right) \left(\left( n+1\right)+1\right) \left( \left( n+1\right)+2 \right) [/mm]
Betrachte:
[mm] \summe_{k=1}^{n+1} k\left( k+1 \right) = \summe_{k=1}^{n} k\left( k+1 \right) + \left( n+1\right) \left( \left( n+1\right)+2 \right) [/mm]
[mm] = \bruch{1}{3}n\left( n+1\right) \left( n+2\right) +\left( \left(n+1\right)\left( n+1\right)+ 2\right) [/mm] // [mm]\bruch{1}{3}[/mm] ausklammern
[mm] = \bruch{1}{3}\left(n\left( n+1\right) \left( n+2\right) +3\left( \left(n+1\right)\left( n+1\right)+ 2\right)\right) [/mm]
Leider komme ich jetzt nicht mehr so recht weiter.
Vielleicht kann mir ja jemand helfen.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:34 Do 12.10.2006 | Autor: | Walty |
Ich habe es als einfacher empfunden, die Zahlen gleich zusammenzuiehen. Deine Formeln mit mehreren klammern werden leicht unübersichtlich...
ausgehend von: (Induktionsannahme)
[mm]\summe_{k=1}^{n} k\left( k+1 \right) = \bruch{1}{3}n \left( n+1\right) \left( n+2 \right) [/mm]
ist (induktion)
[mm]\summe_{k=1}^{n+1} k\left( k+1 \right) = \bruch{1}{3}\left( n+1\right) \left(\left( n+1\right)+1\right) \left( \left( n+1\right)+2 \right)= \bruch{1}{3}\left( n+1\right) \left( n+2\right) \left( n+3 \right) [/mm]
es ist also
[mm]\summe_{k=1}^{n+1} k\left( k+1 \right) = \summe_{k=1}^{n} k\left( k+1 \right) + \left( n+1 \right)*\left(n+2\right) [/mm]
unte der Induktionsannahme kan man ersetzen:
[mm] \summe_{k=1}^{n+1} k\left( k+1 \right) [/mm] = [mm] \bruch{1}{3}n \left( n+1\right) \left( n+2 \right) [/mm] + [mm] \left( n+1 \right)*\left(n+2\right) [/mm] [/mm]
hier wird das Ausklammern schon offensichtlicher
= [mm] \left( n+1\right) \left( n+2 \right) (\bruch{1}{3}n+1)
[/mm]
= [mm] \bruch{1}{3}\left( n+1\right) \left( n+2 \right)(n+3)
[/mm]
qed
hth Walty
|
|
|
|