www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - Vollständige Induktion
Vollständige Induktion < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Mi 25.10.2006
Autor: freeye

Aufgabe
[mm] \summe_{j=2}^{n} [/mm] j(j-1) = ((n-1)*n*(n+1))/3  (n [mm] \ge [/mm] 2)

Beweis durch vollständige Induktion.

Also entweder ich hab die vollständige Induktion nicht verstanden, oder ich mach etwas falsch.

Ich hab (bei A(n+1)):

[mm] \summe_{j=2}^{n+1} [/mm] j(j-1) = [mm] \summe_{j=2}^{n} [/mm] j(j-1) + (n+1)n = ((n-1)n(n+1))/3 + n(n+1)

ist der ansatz soweit richtig?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Mi 25.10.2006
Autor: Gonozal_IX

Hallo freeye,

dein Ansatz (bis auf die Tatsache, daß du noch keinen Induktionsanfang gemacht hast), ist soweit richtig, du musst nur weiterrechnen:

[mm]\summe_{j=2}^{n+1}j(j-1) = \summe_{j=2}^{n}j(j-1) + (n+1)n = \bruch{(n-1)n(n+1)}{3} + n(n+1) = \bruch{n(n+1)(n+2)}{3}[/mm]

Und damit bist du fertig.

Gruß,
Gono.

Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Mi 25.10.2006
Autor: freeye

danke schön!

ich hab eh schon weitergerechnet gehabt und bin auch auf das ergebnis gekommen.. nur versteh ich leider nicht, warum das damit bewiesen ist.

Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Mi 25.10.2006
Autor: DaMenge

Hi,

ja die Sache mit der vollständigen Induktion.
es gehören ZWEI sachen dazu:
1) ein Induktionsanfang
2) der allgemeine schritt von n  nach (n+1)

also durch den Induktionsanfang weißt du, dass es auf jeden Fall in einem speziellem Anfang die Bedingung/Formel erfüllt ist.

durch den allgemeinen Schritt (also wenn man davon ausgeht, dass die Formel/Bedingung für n gilt, dass man dann zeigen, dass sie auch für n+1 gilt) weißt du, dass man immer einen Schritt weiter kommt.

Jetzt packst du beides zusammen:
der anfang ist durch 1) gegeben und durch 2) weißt du dass die Formel/Bedingung auch für die nächste Zahl nach dem Anfang gilt.
dann kann man immer wieder 2) anwenden um zu jeder beliebig großen Zahl zu kommen (über dem Anfang)

es ist wie beim Dominosteine umfallen lassen:
durch 2) weißt du, dass wenn ein Stein gefallen ist, dass dann auch sein nachbar fällt und durch 1) weißt du, dass der erste Stein auf jeden fall fällt.
(also fällt auch der zweite und damit dann auch der dritte usw... also werden alle fallen)

viele Grüße
DaMenge

Bezug
                                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 Mi 25.10.2006
Autor: freeye

ok, danke für die erklärung

aber warum weiß ich explizit in dem obigen beispiel jetzt, dass das stimmt oder nicht?

Bezug
                                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Mi 25.10.2006
Autor: Gonozal_IX

Hiho,

also pass auf:

Du hast gezeigt, daß wenn es für n gilt, es auch für n+1 gilt.
Wenn du nun noch einen Induktionsanfang zeigst, hast du die Aussage damit für alle n [mm] \in \IN [/mm] bewiesen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de