www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - Vollständige Induktion
Vollständige Induktion < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Induktionsschritt?
Status: (Frage) beantwortet Status 
Datum: 14:32 Mi 12.09.2007
Autor: ichonline

Aufgabe
Beweisen Sie mit vollständiger Induktion, dass für alle natürlichen Zahlen n>=1 die Funktion f mit [mm] f(x)=x^n [/mm] die Ableitung f'(x)=n*x^(n-1) bestizt.

Induktionsanfang: für n=1 ist die Aussage wahr. Hab ich überprüft.

Induktionsschritt: Es sei K element N und man nimmt an, dass die Aussage für k gilt.

Und hier ist nun mein Problem. Wie schreib ich das auf?

??? = k*x^(k-1)        
Was schreibt man auf die linke Seite?

Wäre super, wenn mir jemand weiterhelfen könnte. Also wenn ich weiß was auf die linke Seite kommt, dann kann ich auch die weiteren Induktionsschritte, nur der Ansatz it mir ein rätsel.

Grüße ichonline

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Mi 12.09.2007
Autor: schachuzipus

Hallo duonline ;-)

wieso bringst du im Induktionsschritt ein k ins Spiel?

Du führst doch die Induktion über (den Exponenten) [mm] \text{n} [/mm]

Du benötigst nun zuerst mal die [mm] \text{Induktionsvoraussetzung}, [/mm] dass für ein beliebiges, aber feste [mm] n\in\IN [/mm] die Ableitung der Funktion [mm] f_n(x)=x^n [/mm] genau [mm] f_n'(x)=n\cdot{}x^{n-1} [/mm] ist.

Unter dieser Induktionsvoraussetzung musst du nun zeigen, dass für n+1 die Ableitung der Funktion [mm] f_{n+1}(x)=x^{n+1} [/mm] eben genau [mm] f_{n+1}'(x)=(n+1)\cdot{}x^n [/mm] ist

Nun, du kannst dazu [mm] f_{n+1} [/mm] umschreiben:

[mm] f_{n+1}(x)=x^{n+1}=x\cdot{}x^n \left(=x\cdot{}f_n(x)\right) [/mm]

Wie sieht nun die Ableitung von [mm] f_{n+1}(x) [/mm] aus?

Tipp: Produktregel und Induktionsvoraussetzung benutzen.


LG

schachuzipus

Bezug
                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:57 Mi 12.09.2007
Autor: ichonline

achso cool ich glaub ich habs verstanden.
Die Ableitung ist dann: 1*f(x)+f'(x)*x
und jetzt form ich es eifnach so um, dass am Ende die linke und rechte Seite übereinstimmen.

Das n hab ich in k umbenannt weil wir das immer so machen, ist eig. schon unnötig.

Danke für deine Hilfe.

ichonline :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de