Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei $f: [mm] \IN \to \IN$ [/mm] eine Funktion mit $f(f(n)) < f(n+1)$ für alle $n [mm] \in \IN$. [/mm] Man zeige $f(n) = n$ für alle $n [mm] \in \IN$.
[/mm]
Hinweis: Eine Möglichkeit zum Beweis ist zunächst durch Induktion über $n$ zu zeigen, dass $f(k) [mm] \ge [/mm] n$ für alle $n [mm] \in \IN$ [/mm] und $k [mm] \ge [/mm] n$, sowie dass $f(n) < f(n+1)$. |
Ich sitze seit 5 Stunden an dieser Aufgabe und komme einfach auf gar keinen Ansatz. Wie kann ich da anfangen und was bringt mir der Hinweis?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:09 Do 30.10.2008 | Autor: | Marc |
Hallo,
> Sei [mm]f: \IN \to \IN[/mm] eine Funktion mit [mm]f(f(n)) < f(n+1)[/mm] für
> alle [mm]n \in \IN[/mm]. Man zeige [mm]f(n) = n[/mm] für alle [mm]n \in \IN[/mm].
>
> Hinweis: Eine Möglichkeit zum Beweis ist zunächst durch
> Induktion über [mm]n[/mm] zu zeigen, dass [mm]f(k) \ge n[/mm] für alle [mm]n \in \IN[/mm]
> und [mm]k \ge n[/mm], sowie dass [mm]f(n) < f(n+1)[/mm].
> Ich sitze seit 5
> Stunden an dieser Aufgabe und komme einfach auf gar keinen
> Ansatz. Wie kann ich da anfangen und was bringt mir der
> Hinweis?
Den Hinweis kannst du folgendermaßen einsetzen:
Um die Ungleichungen besser zu verstehen, setze doch mal konkrete Zahlen ein. Für n=1,2,3 erhältst du z.B. folgenden Ungleichungen:
$n=1$: [mm] $f(1)\ge [/mm] 1, [mm] f(2)\ge [/mm] 1, [mm] \red{f(3)\ge 1}, f(4)\ge [/mm] 1$, ...
$n=2$: [mm] $f(2)\ge [/mm] 2, [mm] \red{f(3)\ge 2}, f(4)\ge [/mm] 2, [mm] f(5)\ge [/mm] 2$, ...
$n=3$: [mm] $\red{f(3)\ge 3}, f(3)\ge [/mm] 3, [mm] f(4)\ge [/mm] 3, [mm] f(5)\ge [/mm] 3$, ...
Wenn du nur die rot markierten Ungleichungen betrachtest, gilt doch [mm] $f(3)\ge [/mm] 3$.
Was kannst du daraus allgemein für $f(n)$ ableiten? [mm] $f(n)\ge\ldots$ [/mm] (*)
Die Ungleichung $f(n) < f(n+1)$ aus dem Hinweis bedeutet, dass f streng monoton wachsend ist. Streng monoton wachsend bedeutet:
$a<b\ [mm] \Rightarrow\ [/mm] f(a)<f(b)$
Aber es gilt auch die Umkehrung:
[mm] $f(\red{a})
Jetzt schaue dir nochmal die vorausgesetzte Ungleichung an: [mm] $f(\red{f(n)}) [/mm] < [mm] f(\blue{n+1})$. [/mm] Welche Ungleichung folgt daraus für [mm] $\red{f(n)}$? [/mm] (**)
Und zusammen mit (*) folgt dann zwingend [mm] $f(n)=\ldots$
[/mm]
Wenn du Probleme hast, den Hinweis mit Induktion zu zeigen, melde dich bitte nochmal. Was eine Induktion ist, und wie du Induktionsanfang und -schritt formulierst für diese Aufgabe sollte aber eigentlich klar sein (bitte Ansätze posten).
Viele Grüße,
Marc
|
|
|
|