www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Vollständige Induktion
Vollständige Induktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: aufg.1
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:26 Do 06.11.2008
Autor: delicious

Aufgabe
Sind [mm] A_{1} [/mm] , [mm] A_{2}....A_{k} [/mm] Ereignisse mit P( [mm] A_{1}\cap A_{2}\cap ....\cap A_{k} [/mm] ) > 0 , so ist P [mm] (A_{1}\cap ....\cap A_{k} [/mm] ) = P [mm] (A_{1})\* [/mm] P ( [mm] A_{2}|A_{1})\*P [/mm] ( [mm] A_{3}|A_{1})\cap A_{2}\*\*\*P [/mm] ( [mm] A_{k}|A_{1})\cap A_{k-1} [/mm]
Beweise die Formel mit Hilfe der Vollständigen Induktion

Ich kenne die Vollständige Induktion (glaubte auch es zu verstehen), kann sie aber überheaupt nicht auf diese Aufg. beziehen....


        
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:40 Fr 07.11.2008
Autor: luis52

Moin delicious,

Heisst die Aufgabe so?

Sind $ [mm] A_{1} [/mm]  , [mm] A_{2},\dots,A_{k} [/mm] $ Ereignisse mit $P(  [mm] A_{1}\cap A_{2}\cap\dots\cap A_{k} [/mm] $ ) > 0 , so ist


$P [mm] (A_{1}\cap\dots\cap A_{k}) [/mm] = P [mm] (A_{1})*P [/mm] (  [mm] A_{2}|A_{1})*P (A_{3}|A_{1}\cap A_{2})*\dots*P [/mm] ( [mm] A_{k}|A_{1}\cap\ldots\cap A_{k-1}) [/mm] $.



vg Luis            

Bezug
        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Fr 07.11.2008
Autor: Marcel

Hallo,

> Sind [mm]A_{1}[/mm] , [mm]A_{2}....A_{k}[/mm] Ereignisse mit P( [mm]A_{1}\cap A_{2}\cap ....\cap A_{k}[/mm]
> ) > 0 , so ist P [mm](A_{1}\cap ....\cap A_{k}[/mm] ) = P [mm](A_{1})\*[/mm]
> P ( [mm]A_{2}|A_{1})\*P[/mm] ( [mm]A_{3}|A_{1})\cap A_{2}\*\*\*P[/mm] (
> [mm]A_{k}|A_{1})\cap A_{k-1}[/mm]
>  Beweise die Formel mit Hilfe der
> Vollständigen Induktion
>  Ich kenne die Vollständige Induktion (glaubte auch es zu
> verstehen), kann sie aber überheaupt nicht auf diese Aufg.
> beziehen....

  
wo hängt es denn beim Induktionsbeweis? Ist die []bedingte Wahrscheinlichkeit für zwei Ereignisse bekannt?

Gruß,
Marcel

Bezug
                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:00 So 09.11.2008
Autor: delicious

Ja mein problem ist eher die Wahrscheinlichkeitsrechnung, da komme ich nicht so ganz mit....daher verstehe ich wohl nicht, wie ich da die Vollständige Induktion einbringen soll.

Bezug
                        
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:28 Mo 10.11.2008
Autor: Marcel

Hallo,

> Ja mein problem ist eher die Wahrscheinlichkeitsrechnung,
> da komme ich nicht so ganz mit....daher verstehe ich wohl
> nicht, wie ich da die Vollständige Induktion einbringen
> soll.

Du brauchst halt die bedingte W'keit für zwei Ereignisse. Mach' halt den Induktionsanfang für zwei Ereignisse.

Induktionsschritt $n [mm] \mapsto n+1\,:$ [/mm]
[mm] $$P(A_1 \cap [/mm] ... [mm] \cap A_n \cap A_{n+1})=P((A_1 \cap [/mm] ... [mm] \cap A_n) \cap A_{n+1})\,.$$ [/mm]

Jetzt kannst Du die den Satz für zwei Ereignisse auf [mm] $A:=A_1 \cap [/mm] ... [mm] \cap A_{n}$ [/mm] und [mm] $B:=A_{n+1}$ [/mm] anwenden:

$P(A [mm] \cap B)=P(B|A)*P(A)=P(A_{n+1}|A_1 \cap [/mm] ... [mm] \cap A_{n})*P(A_1 \cap [/mm] ... [mm] \cap A_{n})=P(A_1 \cap [/mm] ... [mm] \cap A_{n})*P(A_{n+1}|A_1 \cap [/mm] ... [mm] \cap A_{n})\,.$ [/mm] Auf [mm] $P(A_1 \cap [/mm] ... [mm] \cap A_{n})$ [/mm] kannst Du nun die I.V. für n Ereignisse anwenden.

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de