www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 So 19.06.2011
Autor: frato

Aufgabe
Die Folge [mm] (a_{n}) n\inN [/mm] ist rekursiv definiert durch [mm] a_{0}=1 [/mm] und [mm] a_{n+1}=\wurzel{1+a_{n}} [/mm] für alle [mm] n\in\IN [/mm]

Aufgabe a) Zeigen Sie: [mm] a_{n}\le a_{n+1}\le2 [/mm] für alle [mm] n\in\IN [/mm]

Hallo,
ich habe wieder einmal eine kleine Frage, diesmal zum Thema vollständige Induktion.

Die Lösung dieser Aufgabe sieht so aus:

für n=0: Es ist [mm] a_{0}=1 [/mm] und [mm] a_{1}=\wurzel{1+1}=\wurzel{2} [/mm] und damit [mm] a_{0}\le a_{1}\le2 [/mm]  

Dieser erste Schritt ist mir natürlich noch klar, aber denn hackt es ein wenig:

für n --> n+1: Aus der Induktionsvoraussetzung [mm] a_{n}\le a_{n+1}\le2 [/mm] folgt zunächst [mm] 1+a_{n}\le1+a_{n+1}\le3 [/mm] woraus sich wegen der Monononie der Quadratwurzel [mm] \wurzel{1+a_{n}}\le\wurzel{1+a_{n+1}}\le\wurzel{3}\le2 [/mm] ergibt.

Wie komme ich denn darauf einfach mal alles +1 zu nehmen, so dass dann [mm] 1+a_{n}\le1+a_{n+1}\le3 [/mm] da steht?





        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 So 19.06.2011
Autor: scherzkrapferl


> Wie komme ich denn darauf einfach mal alles +1 zu nehmen,
> so dass dann [mm]1+a_{n}\le1+a_{n+1}\le3[/mm] da steht?
>    

um es einfach auszudrücken: was muss man einem alien erklären damit es eine leiter unendlich weit von selbst klettern kann ?
1.) wie es auf die erste stufe steigt und
2.) wie es von der 1. auf die 2. stufe steigt

sprich: du hast deine "vorschrift"

> Die Folge [mm](a_{n}) n\inN[/mm] ist rekursiv definiert durch
> [mm]a_{0}=1[/mm] und [mm]a_{n+1}=\wurzel{1+a_{n}}[/mm] für alle [mm]n\in\IN[/mm]
>  
> Aufgabe a) Zeigen Sie: [mm]a_{n}\le a_{n+1}\le2[/mm] für alle
> [mm]n\in\IN[/mm]

dann macht dein alien den ersten schritt also für n=0:

> für n=0: Es ist [mm]a_{0}=1[/mm] und [mm]a_{1}=\wurzel{1+1}=\wurzel{2}[/mm]
> und damit [mm]a_{0}\le a_{1}\le2[/mm]  

damit es von der ersten auf die 2. stufe kommt macht es n+1:

> für n --> n+1: Aus der Induktionsvoraussetzung [mm]a_{n}\le a_{n+1}\le2[/mm]
> folgt zunächst [mm]1+a_{n}\le1+a_{n+1}\le3[/mm] woraus sich wegen
> der Monononie der Quadratwurzel
> [mm]\wurzel{1+a_{n}}\le\wurzel{1+a_{n+1}}\le\wurzel{3}\le2[/mm]
> ergibt.

LG Scherzkrapferl

Bezug
                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:45 So 19.06.2011
Autor: frato

Ich habs verstanden und habe meinen Denkfehler gefunden. Vielen Dank ;).

Bezug
                        
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:14 So 19.06.2011
Autor: scherzkrapferl

kein Problem ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de