www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:46 Mo 16.04.2012
Autor: durden88

Aufgabe
Sei [mm] 1^3+2^3+...+n^3=(1+2+...+n)^2 [/mm] mit [mm] \IN \ge [/mm] 1

Also der Induktionsanfang mit n=1 ist erfüllt.

Danach setze ich n+1 für n ein:

[mm] 1^3+2^3+...+n^3+(n+1)^3=(1+2+...+n+(n+1))^2 [/mm]

In wie weit kann ich jetzt zeigen das es erfüllt ist?

        
Bezug
Vollständige Induktion: wo ist die Induktion?
Status: (Antwort) fertig Status 
Datum: 11:52 Mo 16.04.2012
Autor: Roadrunner

Hallo durden!


Du musst jetzt überhaupt mal den Induktionsnachweis führen; d.h. von der Gültigkeit der Formel für $n_$ auf $n+1_$ schließen.

Beginne im Induktionsschritt wie folgt:

[mm] $\blue{1^3+2^3+3^3+...+n^3} [/mm] \ [mm] +(n+1)^3 [/mm] \ = \ [mm] \blue{(1+2+3+...+n)^2}+(n+1)^3 [/mm] \ = \ ... \ = \ [mm] [1+2+3+...+n+(n+1)]^2$ [/mm]

Dabei sind die Pünktchen mittendrin nun durch geeignete Umformungen schrittweise nachzuweisen.


Gruß vom
Roadrunner

Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:15 Mo 16.04.2012
Autor: durden88

Klar das habe ich verstanden. So aber nun: Wenn ich die Potenz 2 aus beiden Summanden herausziehe und diese in Klammer vor der gesamten Summe schreiben würde, hätte ich das Endergebnis....ich habe aber so eine Regel bei den Potenzgesetzen noch nicht gefunden.

Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:20 Mo 16.04.2012
Autor: fred97

Es gilt:

        $  1+2+...+n= [mm] \bruch{n(n+1)}{2}$ [/mm]

FRED

Bezug
                                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:37 Mo 16.04.2012
Autor: durden88

Ok danke, also:

[mm] (\bruch{n(n+1)}{2})^2+(n+1)^3=[\bruch{n(n+1)}{2}+(n+1)]^2 [/mm]
[mm] \bruch{n^4+2n^3+n^2}{4}+(n+1)^3=\bruch{n^2(n+1)^2}{4}+2*\bruch{n(n+1)}{2}*(n+1) [/mm]

= [mm] \bruch{n^4+2n^3+n^2}{4}+(n+1)^3=\bruch{n^4+2n^3+n^2}{4}+n^3+2n^2+n+(n+1)^2 [/mm]

[mm] =n^3+2n^2+n+n^2+2n+1=n^3+2n^2+n+n^2+2n+1 [/mm]

Also stimmts! So kann ich das machen oder?

Bezug
                                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Mo 16.04.2012
Autor: schachuzipus

Hallo durden88,


> Ok danke, also:
>  
> [mm](\bruch{n(n+1)}{2})^2+(n+1)^3=[\bruch{n(n+1)}{2}+(n+1)]^2[/mm]

Doch eher [mm]\left[\frac{n(n+1)}2}\right]^2+(n+1)^3[/mm]

Wie hast du das [mm](n+1)^3[/mm] in die Klammer reingezogen?

>  
> [mm]\bruch{n^4+2n^3+n^2}{4}+(n+1)^3=\bruch{n^2(n+1)^2}{4}+2*\bruch{n(n+1)}{2}*(n+1)[/mm]

Was ist hier passiert?

Wie kommst du von [mm](n+1)^3[/mm] auf [mm]n(n+1)^2[/mm] ?

Richtig:

[mm]\frac{n^2(n+1)^2}{4}+(n+1)^3=\frac{n^2(n+1)^2}{4}+\frac{4(n+1)^3}{4}[/mm]

Dann [mm](n+1)^2[/mm] im Zähler ausklammern ...

[mm]=\frac{(n+1)^2\cdot{}[n^2+4(n+1)]}{4}=\frac{(n+1)^2(n+2)^2}{4}=\left(\frac{(n+1)(n+2)}{2}\right)^2=...[/mm]


>  
> =
> [mm]\bruch{n^4+2n^3+n^2}{4}+(n+1)^3=\bruch{n^4+2n^3+n^2}{4}+n^3+2n^2+n+(n+1)^2[/mm]
>  
> [mm]=n^3+2n^2+n+n^2+2n+1=n^3+2n^2+n+n^2+2n+1[/mm]
>  
> Also stimmts! So kann ich das machen oder?

Da ist zuviel durcheinander ...

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de