www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:22 Mo 14.01.2013
Autor: happyhippo213

Aufgabe
Schreiben Sie die folgende Summe mit Summenzeichen und beweisen Sie die aufgestellte Behauptung mit vollständiger Induktion.

1*2 + 2*3 + 3*4 + ... + n(n+1) = [mm] \bruch{n(n+1)(n+2)}{3} [/mm]

Hallo, ich habe Probleme, bei der oben genannten aufgabe, und hoffe, dass mir jmd. helfen kann.

Das Summenzeichen sieht bei mir so aus:
[mm] \summe_{i=1}^{n} [/mm] i(i+1)

- Dazu schon meine 1. Frage: muss i=0 sein bei der vollst. Induktion? Dann wär das ja
[mm] \summe_{i=0}^{n} [/mm] (i+1)(i+1+1)

Aber wenn ich jetzt das 1. Summenzeichen betrachte, rechne ich beide seiten aus. Einmal für i=1 und einmal für n=1 :
1(1+1) = [mm] \bruch{1(1+1)(1+2)}{3} [/mm]  => WA!

und jetzt muss ich doch gucken, ob das für n+1 auch gilt... aber da kommt glaub ich mein Problem :\

[mm] \summe_{i=1}^{n+1} [/mm] i(i+1)

da kann ich ja jetzt das letzte Glied abspalten...

[mm] \summe_{i=1}^{n} [/mm] i(i+1) + n+1( n+1+1)

und der vordere ausdruck muss jetzt gleich der rechten seite sein, also dem bruch, nur wurde n+1 eingesetzt???

= [mm] \bruch{n+1(n+1+1)(n+1+2)}{3} [/mm]
und das muss dann theoretisch ...
= [mm] \bruch{n(n+1)(n+2)}{3} [/mm]
... sein
Mich verwirrt das echt totl. Vor Allem sind die Brüche doch nicht gleich?! ich hoffe mir kann jmd helfen...
Danke!!!

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)



        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:55 Mo 14.01.2013
Autor: Helbig

Hallo happyhippo,

> Schreiben Sie die folgende Summe mit Summenzeichen und
> beweisen Sie die aufgestellte Behauptung mit vollständiger
> Induktion.
>  
> 1*2 + 2*3 + 3*4 + ... + n(n+1) = [mm]\bruch{n(n+1)(n+2)}{3}[/mm]
>  Hallo, ich habe Probleme, bei der oben genannten aufgabe,
> und hoffe, dass mir jmd. helfen kann.
>
> Das Summenzeichen sieht bei mir so aus:
>  [mm]\summe_{i=1}^{n}[/mm] i(i+1)

Richtig!

>  
> - Dazu schon meine 1. Frage: muss i=0 sein bei der vollst.
> Induktion? Dann wär das ja
>  [mm]\summe_{i=0}^{n}[/mm] (i+1)(i+1+1)

Nein, i muss nicht 0 sein! Und diese Summe hat auch einen anderen Wert. Der letzte Summand ist hier $(n+1)*(n+2)$ und nicht $n*(n+1)$ wie in der Aufgabe.

>  
> Aber wenn ich jetzt das 1. Summenzeichen betrachte, rechne
> ich beide seiten aus. Einmal für i=1 und einmal für n=1
> :
>  1(1+1) = [mm]\bruch{1(1+1)(1+2)}{3}[/mm]  => WA!

Wenn ich das richtig interpretiere, versuchst Du, die Formel mit Induktion nach $n$ zu beweisen. Und hier hast Du den Induktionsanfang erledigt. Deine Ausführungen wäre verständlicher, wenn Du dies andeuten würdest. Wie auch immer, bis jetzt ist alles richtig!

>  
> und jetzt muss ich doch gucken, ob das für n+1 auch
> gilt... aber da kommt glaub ich mein Problem :\

Ja, das sehe ich auch so. Im Induktionsschritt mußt Du die Formel für (n+1) zeigen (dies ist die Induktionsbehauptung), unter der Voraussetzung, daß die Formel für n gilt (dies ist die Induktionsvoraussetzung).

Schreibe doch mal die Induktionsvoraussetzung und Induktionsbehauptung auf. Und rechne drauf los. Das heißt ersetze die drei Punkte, bis Du die rechte Seite der Induktionsbehauptung da stehen hast.

[mm] $\sum_{i=1}^{n+1} [/mm] i*(i+1) = [mm] \sum_{i=1}^n [/mm] i*(i+1) + (n+1)*(n+2) = [mm] \ldots [/mm] $

Gruß,
Wolfgang

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de