www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: 2 Aufgaben
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:32 So 14.04.2013
Autor: MatheDell

Aufgabe
Beweisen Sie mittels vollständiger Induktion:

1) [mm] \summe_{i=1}^{n}(\bruch{i}{2^i}) [/mm] = 2 - [mm] \bruch{n+2}{2^n} [/mm]

2) [mm] 3*\summe_{i=1}^{n+1}(2i-1)² [/mm] = 4n³+12n²+11n+3

Ich wende für beide Teilaufgaben die vollständige Induktion an, jedoch stimmen bei mir die Gleichungen am Ende nicht überein.

In der ersten Teilaufgabe komme ich auf [mm] 2-\bruch{3n+5}{2^(n+1)} [/mm] und in der zweiten auf 4n³+12n²+11n+6

wobei ich für beide Induktionsanfänge n=1 gewählt habe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:35 So 14.04.2013
Autor: fred97


> Beweisen Sie mittels vollständiger Induktion:
>  
> 1) [mm]\summe_{i=1}^{n}(\bruch{i}{2^i})[/mm] = 2 - [mm]\bruch{n+2}{2^n}[/mm]
>  
> 2) [mm]3*\summe_{i=1}^{n+1}(2i-1)²[/mm] = 4n³+12n²+11n+3
>  Ich wende für beide Teilaufgaben die vollständige
> Induktion an, jedoch stimmen bei mir die Gleichungen am
> Ende nicht überein.
>  
> In der ersten Teilaufgabe komme ich auf
> [mm]2-\bruch{3n+5}{2^(n+1)}[/mm] und in der zweiten auf
> 4n³+12n²+11n+6
>  
> wobei ich für beide Induktionsanfänge n=1 gewählt habe.


Tja, was soll man dazu sagen ? Wäre ich Hellseher, so würde ich mir Deine Rechnungen ansehen können, die Du ja nicht verraten willst. Ich bin aber kein Hellseher.....

Was machen wir nun ?

FRED

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 So 14.04.2013
Autor: MatheDell

Meine Rechnungen bis jetzt:

1)

I.A. [mm] \summe_{i=1}^{n=1}(\bruch{i}{2^i}) [/mm] = 2 - [mm] \bruch{n+2}{2^n} [/mm] = [mm] \bruch{1}{2¹} [/mm] = [mm] 2-\bruch{1+2}{2}=\bruch{1}{2} [/mm]

I.S. [mm] \summe_{i=1}^{n=1+1}(\bruch{i}{2^i}) [/mm] = [mm] 2-(\bruch{(n+1)+2}{2^(n+1)})=2-(\bruch{n+3}{2^n*2}) [/mm]

[mm] \summe_{i=1}^{n=1+1}(\bruch{i}{2^i}) [/mm] = [mm] \summe_{i=1}^{n=1}(\bruch{i}{2^i}) [/mm] + [mm] \bruch{n+1}{2^(n+1)} [/mm] =(IV) [mm] 2-\bruch{(n+2)}{(2^n)}+\bruch{(n+1)}{2^(n+1)} [/mm] = [mm] 2-\bruch{2(n+2)}{2^(n+1)}+\bruch{(n+1)}{2^(n+1)} [/mm] = [mm] 2-\bruch{3n+5}{2^(n+1)} [/mm]

Bezug
                        
Bezug
Vollständige Induktion: Vorzeichenfehler
Status: (Antwort) fertig Status 
Datum: 16:31 So 14.04.2013
Autor: Loddar

Hallo MatheDell,

[willkommenmr] !!


> I.A. [mm]\summe_{i=1}^{n=1}(\bruch{i}{2^i})[/mm] = 2 - [mm]\bruch{n+2}{2^n}[/mm] = [mm]\bruch{1}{2¹}[/mm] = [mm]2-\bruch{1+2}{2}=\bruch{1}{2}[/mm]

[ok]


> I.S. [mm]\summe_{i=1}^{n=1+1}(\bruch{i}{2^i})[/mm] = [mm]2-(\bruch{(n+1)+2}{2^(n+1)})=2-(\bruch{n+3}{2^n*2})[/mm]

Das ist noch nicht der Induktionsschritt, sondern, was es zu zeigen gilt.

Zudem muss es oberhalb des Summenzeichens $n+1_$ lauten.


> [mm]\summe_{i=1}^{n=1+1}(\bruch{i}{2^i})[/mm] = [mm]\summe_{i=1}^{n=1}(\bruch{i}{2^i})[/mm] + [mm]\bruch{n+1}{2^(n+1)}[/mm] =(IV) [mm]2-\bruch{(n+2)}{(2^n)}+\bruch{(n+1)}{2^(n+1)}[/mm] = [mm]2-\bruch{2(n+2)}{2^(n+1)}+\bruch{(n+1)}{2^(n+1)}[/mm]

Bis hierhin stimmt es mit Ausnahme der Ausdrücke auf den Summenzeichen (siehe oben).


> = [mm]2-\bruch{3n+5}{2^(n+1)}[/mm]

[notok] Hier fasst Du die Brüche falsch zusammen, da Du das Minuszeichen vor dem ersten Bruch ignorierst.


Gruß
Loddar

Bezug
                                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:46 So 14.04.2013
Autor: MatheDell

Habe das Vorzeichen ignoriert, wie dumm.

Kannst du mir noch bei der anderen Aufgabe helfen?

Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 So 14.04.2013
Autor: MatheDell

Meine Rechnungen zur zweiten Aufgabe:

I.A.
[mm] 3*\summe_{i=1}^{1+1}(2i-1)^2=3*(1+9)=10*3=30=4*1^3+12*1^2+11*1+3=30 [/mm]

I.S.
[mm] 3*\summe_{i=1}^{n+1}(2i-1)^2=4n^3+12n^2+11n+3 \Rightarrow 3*\summe_{i=1}^{(n+1)+1}(2i-1)^2=4(n+1)^3+12(n+1)^2+11(n+1)+3 [/mm]

[mm] 3*(\summe_{i=1}^{n+1}(2i-1)^2+\summe_{i=1}^{1}(2i-1)^2) [/mm]
=(IV) 4n³+12n²+11n+3+3

Bezug
                        
Bezug
Vollständige Induktion: Korrektur
Status: (Antwort) fertig Status 
Datum: 16:49 So 14.04.2013
Autor: Loddar

Hallo MatheDell!


> I.A.
> [mm]3*\summe_{i=1}^{1+1}(2i-1)^2=3*(1+9)=10*3=30=4*1^3+12*1^2+11*1+3=30[/mm]

[ok] Ich selber hätte hier wohl eher mit [mm]n \ = \ 0[/mm] gestartet, aber das ändert nichts.



> I.S.
> [mm]3*\summe_{i=1}^{n+1}(2i-1)^2=4n^3+12n^2+11n+3 \Rightarrow 3*\summe_{i=1}^{(n+1)+1}(2i-1)^2=4(n+1)^3+12(n+1)^2+11(n+1)+3[/mm]

Wie oben bereits geschrieben: das ist noch nicht der Induktionsschritt, sondern die zu zeigende Behauptung.


> [mm]3*(\summe_{i=1}^{n+1}(2i-1)^2+\summe_{i=1}^{1}(2i-1)^2)[/mm] =(IV) 4n³+12n²+11n+3+3

Das hier ist nun nicht mehr ganz nachvollziehbar.

Es gilt:

[mm]3*\summe_{i=1}^{n+2}(2*i-1)^2[/mm]

[mm]= \ \red{3*\summe_{i=1}^{n+1}(2*i-1)^2} \ + \ \blue{3*\summe_{i=n+2}^{n+2}(2*i-1)^2}[/mm]

[mm]= \ \red{4*n^3+12*n^2+11*n+3} \ + \ \blue{3*[2*(n+2)-1]^2}[/mm]

Nun weiter zusammenfassen.


Gruß
Loddar

Bezug
                                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:18 So 14.04.2013
Autor: MatheDell

Vielen Dank. Ich denke mein Fehler bestand darin, dass ich [mm] \summe_{i=1}^{n+2} [/mm] in [mm] \summe_{i=1}^{n+1} [/mm] und [mm] \summe_{i=1}^{1} [/mm] anstatt in [mm] \summe_{i=1}^{n+1} [/mm] und [mm] \summe_{i=1}^{n+2} [/mm] aufzuteilen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de