www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Induktion
Status: (Frage) beantwortet Status 
Datum: 19:45 Sa 27.04.2013
Autor: Masseltof

Aufgabe
Sei n [mm] \in \In. [/mm]

Finden Sie eine Formel für die Anzahl der binären Folgen der Länge n, wobei n eine feste natürliche Zahl ist und beweisen Sie diese Formel mit Induktion nach.

Guten Abend.

Mein Ansatz zu dieser Aufgabe ist der folgende:

Es sei [mm] 2^n [/mm] die Anzahl aller binären Folgen der Länge n, wobei es zu jeder n-längigen Folge zwei n+1 längige Folgen existieren.

Sei g(n):= [mm] 2^n [/mm]

Induktionsbeginn:
[mm] 2^1=2 [/mm]

Prüfung der Annahme:
{1}, {0}

Induktionsschritt:
[mm] 2^n+1!=2g(n) [/mm]

[mm] 2^{n+1}=2^n*2=2*2^n=2*g(n) [/mm]

Dies entspricht der Voraussetzung, dass es zu jeder n-längigen Folge zwei n+1 längige Folgen existieren.

Ist das so i.O?


Grüße


        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:25 So 28.04.2013
Autor: fred97


> Sei n [mm]\in \In.[/mm]
>
> Finden Sie eine Formel für die Anzahl der binären Folgen
> der Länge n, wobei n eine feste natürliche Zahl ist und
> beweisen Sie diese Formel mit Induktion nach.
>  Guten Abend.
>  
> Mein Ansatz zu dieser Aufgabe ist der folgende:
>  
> Es sei [mm]2^n[/mm] die Anzahl aller binären Folgen der Länge n,
> wobei es zu jeder n-längigen Folge zwei n+1 längige
> Folgen existieren.
>  
> Sei g(n):= [mm]2^n[/mm]
>  
> Induktionsbeginn:
>  [mm]2^1=2[/mm]
>  
> Prüfung der Annahme:
>  {1}, {0}
>  
> Induktionsschritt:
>  [mm]2^n+1!=2g(n)[/mm]


Hier meinst Du wohl: ist n [mm] \in \IN [/mm] und [mm] g(n)=2^n, [/mm] so ist [mm] 2^{n+1}=2g(n). [/mm]

Das ist aber trivial, wie Du unten gezeigt hast. Der Punkt ist jedoch, dass Du zeigen sollst:

     ist n [mm] \in \IN [/mm] und [mm] g(n)=2^n, [/mm] so ist [mm] 2^{n+1}=g(n+1). [/mm]


>  
> [mm]2^{n+1}=2^n*2=2*2^n=2*g(n)[/mm]
>  
> Dies entspricht der Voraussetzung, dass es zu jeder
> n-längigen Folge zwei n+1 längige Folgen existieren.
>
> Ist das so i.O?

Nein.


FRED

>  
>
> Grüße
>  


Bezug
        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 So 28.04.2013
Autor: angela.h.b.


> Sei n [mm]\in \In.[/mm]

>

> Finden Sie eine Formel für die Anzahl der binären Folgen
> der Länge n, wobei n eine feste natürliche Zahl ist und
> beweisen Sie diese Formel mit Induktion nach.
> Guten Abend.

Hallo,

wie Fred Dir schon gesagt hat, ist das so nicht in Ordnung.

>

> Mein Ansatz zu dieser Aufgabe ist der folgende:

>

> Es sei [mm]2^n[/mm] die Anzahl aller binären Folgen der Länge n,
> wobei es zu jeder n-längigen Folge zwei n+1 längige
> Folgen existieren.

>

Diesem Ansatz entnehme ich aber, daß Du die völlig richtige Idee zur Lösung der Aufgabe hast - auch wenn sie komisch formuliert ist.


Durch Induktion zeigen möchtest Du die Behauptung:

Es ist [mm] g(n):=2^n [/mm] die Anzahl der binären Folgen der Länge n ür alle [mm] n\in \IN [/mm] .

> Induktionsbeginn:

n=1

> Prüfung der Annahme:

Es gibt genau zwei binäre Folgen der Länge n=1, nämlich

> {1}, {0}.

Also ist [mm] g(1)=2=2^1. [/mm]

Induktionsvoraussetzung:
es gelte die Behauptung für ein [mm] n\in \IN. [/mm]


>

> Induktionsschritt:

Zu zeigen: unter der Voraussetzung gilt die Behauptung auch für n+1, dh. es ist [mm] g(n+1)=2^{n+1}. [/mm]

Bew.: hier mußt Du nun erklären, wie Du aus den Folgen der Länge n die der Länge n+1 bekommst, und warum sich gerade [mm] g(n+1)=2^{n+1} [/mm] ergibt.

Du weißt es richtig, mußt es nur noch formulieren.
Worte sind erlaubt.

LG Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de