www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vollständige Induktion Ungl.
Vollständige Induktion Ungl. < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion Ungl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:57 Sa 17.04.2010
Autor: s.t.o.r.m.

Hallo,
ich komme bei folgender Aufgabe nicht weiter: Ich soll mittels vollständiger Induktion beweisen: [mm] 2^n>5n [/mm] mit [mm] n\in \IN [/mm]
Der Induktionsanfang ist klar: Es gilt für alle n>=5. Wie funktioniert der Induktionsschritt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständige Induktion Ungl.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:13 Sa 17.04.2010
Autor: steppenhahn

Hallo!

>  ich komme bei folgender Aufgabe nicht weiter: Ich soll
> mittels vollständiger Induktion beweisen: [mm]2^n>5n[/mm] mit [mm]n\in \IN[/mm]
>  
> Der Induktionsanfang ist klar: Es gilt für alle n>=5. Wie
> funktioniert der Induktionsschritt?

Was meinst du damit: "Es gilt für alle n >= 5"?
Der Induktionsanfang ist, die Aussage für n = 5 nachzuprüfen. Da steht dann da:

[mm] $2^{5} [/mm] = 32 > 25 = 5*5$

okay?

Beim Induktionsschritt hast du nun gegeben, dass [mm] $2^{n} [/mm] > 5*n$ gilt, und musst beweisen, dass dann auch [mm] $2^{n+1} [/mm] > 5*(n+1)$ gilt.

Beginne so:

[mm] $2^{n+1} [/mm] = [mm] 2*2^{n} [/mm] > ...$

(Nun Induktionsvoraussetzung benutzen und n [mm] \ge [/mm] 5 !)

Grüße,
Stefan

Bezug
                
Bezug
Vollständige Induktion Ungl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Sa 17.04.2010
Autor: s.t.o.r.m.

Danke, genau bis zum "..." bin ich gekommen ;)
Ich habe jetzt [mm] 2^n+1=2^n*2^1 [/mm] > 5(n+1)
Ich weiß nicht, wie ich jetzt weiter vorgehen muss oder was ich wo einsetzten soll.

Bezug
                        
Bezug
Vollständige Induktion Ungl.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Sa 17.04.2010
Autor: steppenhahn

Hallo,

schreibe bitte beim nächsten Mal, wie weit du gekommen bist, damit wir uns nicht umsonst bemühen.

Wir haben:

[mm] $2^{n+1} [/mm] = [mm] 2*2^{n}$ [/mm]

Nun können wir die Induktionsvoraussetzung benutzen! Wegen [mm] $2^{n} [/mm] > 5*n$ ist:

[mm] $2^{n+1} [/mm] = [mm] 2*2^{n} [/mm] > 2*(5*n) = 5*n + 5*n$

Nun gilt [mm] $n\ge [/mm] 1$, deswegen ist $5*n [mm] \ge [/mm] 5$, und wir haben:

[mm] $2^{n+1} [/mm] = [mm] 2*2^{n} [/mm] > 2*(5*n) = 5*n + 5*n [mm] \ge [/mm] 5*n + 5 = 5*(n+1)$,

was zu zeigen war.

Grüße,
Stefan


Bezug
                                
Bezug
Vollständige Induktion Ungl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 Sa 17.04.2010
Autor: s.t.o.r.m.

Vielen Dank für die Antwort! Habe es fast verstanden. Mir fehlt nur noch, wie du auf das [mm] \ge5\*n+5 [/mm] am Ende kommst. Könntest du mir das noch bitte erklären?

Bezug
                                        
Bezug
Vollständige Induktion Ungl.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Sa 17.04.2010
Autor: steppenhahn

Hallo!

> Vielen Dank für die Antwort! Habe es fast verstanden. Mir
> fehlt nur noch, wie du auf das [mm]\ge5\*n+5[/mm] am Ende kommst.
> Könntest du mir das noch bitte erklären?

Du fragst, warum

$5*n + 5*n [mm] \ge [/mm] 5*n + 5$

gilt? Meine Antwort: Nach Voraussetzung ist [mm] $n\ge [/mm] 5$, also insbesondere [mm] $n\ge [/mm] 1$. Damit ist $5*n [mm] \ge [/mm] 5$.

Grüße,
Stefan

Bezug
                                                
Bezug
Vollständige Induktion Ungl.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:01 Sa 17.04.2010
Autor: s.t.o.r.m.

Alles klar! Danke für die Hilfe und die schnellen Antworten!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de