www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Vollständige Induktion über n
Vollständige Induktion über n < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion über n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:02 Fr 02.12.2005
Autor: Nieke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi!
Ich soll zeigen, dass für alle n [mm] \in \IN [/mm] und x [mm] \in \IR [/mm] mit 1<x gilt: [mm] x^{1/n} \le [/mm] x.

Ich habe versucht, das mit vollständiger Induktion zu lösen. Das sieht bei mir so aus:

Sei n [mm] \in \IN [/mm] und x [mm] \in \IR [/mm] mit 1 < x.

Induktionsverankerung:
n=1.
[mm] x^{1/1} [/mm] =x [mm] \le [/mm] x

Induktionsannahme:
[mm] x^{1/n} \le [/mm] x

Induktionsbehauptung:
[mm] x^{1/n+1} \le [/mm] x

Induktionsschritt:
[mm] x^{1/n+1} \le x^{1/n} \le [/mm] x
weil n+1 [mm] \le [/mm] n ist bzw. [mm] \wurzel[n+1]{x} \le \wurzel[n]{x} [/mm]
Daraus folgt dann, dass [mm] x^{1/n+1} \le [/mm] x

Ich würde mich freuen, wenn mir jemand einen Tipp geben kann, ob das richtig ist. Mir kommt es zu einfach vor, ich kann mir nicht vorstellen, dass die Aufgabe damit schon gelöst ist.

Gruß Nieke


        
Bezug
Vollständige Induktion über n: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Fr 02.12.2005
Autor: Mathe_Alex

Guten Morgen,

Ich würde nicht sagen, dass Du recht hast, denn Du machst bei deiner Induktion die linke Seite der Ungleichung größer, wenn Du die Induktionsvoraussetzung anwendest....meine Lösung kommt mir aber auch komisch vor, aber ich sende sie mal:

I.A. [mm] x^{\bruch{1}{n}} \le [/mm] x

n->n+1

[mm] x^{\bruch{1}{n+1}} \le [/mm] x

<=> [mm] \bruch{x}{x^{n/n+1}} [/mm]
<=> [mm] \bruch{xx^{1/n}}{x^{n+1/n}} [/mm]

Nach IA ist [mm] x^{\bruch{1}{n}} \le [/mm] x , also ersetze ich es im Zähler. Der Bruch wird kleiner auf der linken Seite, die Umformungist also erlaubt.

<=> [mm] x^{2} \le x^{\bruch{2n+1}{n}} [/mm]

Ein paar Worte zu meiner Idee: [mm] \bruch{1}{n+1} [/mm] gefällt mir nicht, also mach ich daraus [mm] \bruch{1+n-n}{n+1}=\bruch{n+1}{n+1}-\bruch{n}{n+1} [/mm] Diesen Trick wende ich zweimal an, um den Exponenten so umzuformen, dass ich die Induktionsvoraussetzung verwenden kann. Außerdem mache ich nach beim Induktionsschritt
[mm] x^{\bruch{1}{n+1}}= x:x^{n/n+1} [/mm] diese Umformung. Danach oben besagten Trick mit +n-n.....hoffe es stimmt. Ansonsten kannst Du ja mal meine Versuche als Anregungn nehmen.

Gruß
Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de