www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vollstd.Induktion Ungleichung
Vollstd.Induktion Ungleichung < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollstd.Induktion Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 So 21.10.2012
Autor: Bakabakashii

Aufgabe
Beweisen Sie für alle n [mm] \in \IN [/mm] , n >= 2, mit vollständiger Induktion, dass die folgende Aussage [mm] a_{n} [/mm] > 2 gilt,
wobei  
[mm] a_{n} [/mm] := [mm] (1+\bruch{1}{n})^{n}. [/mm]


Hinweis: Mit der Bernoullischen Ungleichung kann man zeigen, dass [mm] b_{n} [/mm] := [mm] \bruch{a_{n+1}}{a_n} \ge [/mm] 1.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Für die Induktionsvoraussetzung habe ich n = 2 genommen, was [mm] 2+\bruch{1}{4} [/mm] > 2 ergibt. [mm] a_{n} [/mm] gilt also schon mal für n = 2.


Nun liegt das Problem beim Induktionsschritt und dem Hinweis mit [mm] b_{n}. [/mm]

[mm] a_{n+1} [/mm] = [mm] (1+\bruch{1}{(n+1)})^{n+1} [/mm]


Egal, wie ich es auch umforme, die n+1 innerhalb der Klammer macht es mir nicht möglich, da ein [mm] a_{n} [/mm] herausfiltern zu können. Aber ohne [mm] a_{n} [/mm] kann ich die IV nicht nutzen und somit auch nicht zeigen, dass es > 2 ist.


Dann wäre da noch der Hinweis. Der erste Gedanke wäre, dass man sowas wie

[mm] a_{n}*b_{n} [/mm] > [mm] 2*b_{n} [/mm]

[mm] \gdw [/mm]

[mm] a_{n+1} [/mm] > [mm] 2*b_{n} [/mm]


machen könnte.
Allerdings wäre [mm] 2*b_{n} [/mm] wegen [mm] b_{n} \ge [/mm] 1 dann [mm] \ge [/mm] 2. Aber man braucht ja [mm] a_{n+1} [/mm] > 2 und nicht [mm] a_{n+1} \ge [/mm] 2.

[mm] b_{n} [/mm] muss also irgendwie beim Umformen auftauchen. Aber da ich schon kein [mm] a_{n} [/mm] herausbekomme, wie soll ich dann [mm] b_{n}, [/mm] wo ein [mm] a_{n} [/mm] enthalten ist, bekommen.

Zusätzlich weiß ich nicht, wie man mit der Bernoullischen Ungleichung überhaupt auf [mm] b_{n} [/mm] kommen soll.

Soviel zu dem ersten Lösungsversuch meinerseits.



Der zweite ist viel einfacher, aber irgendwie... habe ich da so meine Zweifel.

Wenn man nämlich die Bernoullische Ungleichung, also [mm] (1+x)^{n} [/mm] > 1+nx (x [mm] \in \IR, [/mm] x > -1, x [mm] \not= [/mm] 0, n [mm] \ge [/mm] 2), benutzt, scheint das ganze sehr offensichtlich zu sein.

für [mm] a_{n} [/mm] hätte man x = [mm] \bruch{1}{n} [/mm] und somit
[mm] (1+\bruch{1}{n})^{n} [/mm] > [mm] 1+n(\bruch{1}{n}) [/mm] = 2  also [mm] a_{n} [/mm] > 2


für [mm] a_{n+1} [/mm] hätte man x = [mm] \bruch{1}{n} [/mm] und n = n+1 somit
[mm] (1+\bruch{1}{n+1})^{n+1} [/mm] > [mm] 1+(n+1)(\bruch{1}{n+1}) [/mm] = 2


oder

[mm] a_{n} [/mm] > 2

[mm] \gdw [/mm]

[mm] (1+\bruch{1}{n})^{n} [/mm] > 2


da [mm] 1+\bruch{1}{n} [/mm] > 0

[mm] \Rightarrow [/mm]

[mm] (1+\bruch{1}{n})^{n}*(1+\bruch{1}{n}) [/mm] > [mm] 2*(1+\bruch{1}{n}) [/mm]    


da [mm] \bruch{1}{n} [/mm] > [mm] \bruch{1}{n+1} [/mm] > 0

[mm] \Rightarrow [/mm]

[mm] (1+\bruch{1}{n+1})^{n}*(1+\bruch{1}{n+1}) [/mm] > [mm] 2*(1+\bruch{1}{n+1}) [/mm]

[mm] \gdw [/mm]

[mm] (1+\bruch{1}{n+1})^{n+1} [/mm] = [mm] a_{n+1} [/mm] > [mm] 2*(1+\bruch{1}{n+1}) [/mm] = [mm] 2+\bruch{2}{n+1} [/mm] > 2


Allerdings braucht man hier, wie man sieht, [mm] b_{n} [/mm] überhaupt nicht. Deswegen zweifel ich auch daran, dass dies der richtige Weg ist.

Vielleicht hat jemand ne Idee oder einen Tipp, wie man diese Aufgabe lösen könnte.





        
Bezug
Vollstd.Induktion Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:26 Mo 22.10.2012
Autor: Leopold_Gast

Als Hilfe ist dir ja

[mm](\*) \ \ \frac{a_{n+1}}{a_n} \geq 1 \, , \ \ n \geq 1[/mm]

gegeben, was zu [mm]a_{n+1} \geq a_n[/mm] äquivalent ist. Mit anderen Worten: Die Folge ist streng monoton wachsend. Dann müssen aber insbesondere alle Folgenglieder ab dem zweiten größer als [mm]a_1 = 2[/mm] sein. Wieso du für diese triviale Folgerung einen Induktionsbeweis führen sollst, ist mir schleierhaft. Aber bitte, wenn's sein muß ...

Die eigentliche Arbeit liegt im Nachweis von [mm](\*)[/mm] (und das geht ganz ohne Induktion). Rechentechnisch wird er einfacher, wenn du die äquivalente Aussage

[mm]\frac{a_n}{a_{n-1}} \geq 1 \, , \ \ n \geq 2[/mm]

beweist:

[mm]\frac{a_n}{a_{n-1}} = \frac{\left( 1 + \frac{1}{n} \right)^n}{\left( 1 + \frac{1}{n-1} \right)^{n-1}} = \left( \frac{\ \frac{n+1}{n} \ }{\ \frac{n}{n-1} \ } \right)^n \cdot \frac{n}{n-1}[/mm]

Jetzt den Doppelbruch beseitigen und die dritte binomische Formel beachten. Dann ist es nur noch eine kleine Sache, um die Bernoullische Ungleichung anwenden zu können. Überprüfe, ob alle Voraussetzungen für die Anwendbarkeit vorliegen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de