Volumen 4-dim. Einheitskugel < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:23 Mo 13.07.2009 | Autor: | MaRaQ |
Aufgabe | Berechnen Sie das Volumen der Einheitskugel [mm]B_1(0)[/mm] im 4-dimensionalen Raum [mm]\IR^4[/mm]
|
Als Tipp habe ich noch mit auf den Weg bekommen, dass das mit dem Satz von Fubini gut lösbar ist.
Zunächst mal habe ich die Einheitskugel skizziert:
[mm]B_1(0) = \{ x := (a,b,c,d) \in \IR^4 : ||x|| < 1\} = \{ x \in \IR^4 : \wurzel{a^2 + b^2 + c^2 + d^2} < 1\} = \{ x \in \IR^4 : a^2 + b^2 + c^2 + d^2 < 1\}[/mm]
Das ist eine kompakte, also messbare Menge - also kann ich Fubini anwenden.
Dafür habe ich mir einmal die Variablen in Beziehungen gesetzt, um Integrationsgrenzen zu ermitteln:
Zunächst habe ich mir a als erstes Integral ausgesucht (und die Grenzen auf -1 und 1 gelegt, da die Menge keine Elemente <-1 und >1 aufweist) - und in Abhängigkeit von a die anderen Variablen folgendermaßen:
[mm]1- a^2 > b^2 + c^2 + d^2 > b^2 \Rightarrow -\wurzel{1 - a^2} < b < \wurzel{1 - a^2}[/mm]
[mm]1 - a^2 > b^2 + c^2 + d^2 > b^2 + c^2 \Rightarrow -\wurzel{1-a^2 - b^2} < c < \wurzel{1 - a^2 - b^2}[/mm]
[mm]1 - a^2 > b^2 + c^2 + d^2 \Rightarrow -\wurzel{1 - a^2 - b^2 - c^2} < d < \wurzel{1 - a^2 -b^2 - c^2}[/mm]
So zumindest wurde uns das Vorgehen in der Übung gezeigt: Mehr oder weniger willkürlich die Bedingung umformulieren und wenn nötig etwas ausprobieren, bis es passt, damit man mit den Integrationsgrenzen gut arbeiten kann.
Gibts da nicht ein besseres Vorgehen? Zumal ich mit dieser "Methode" schon oft genug gescheitert bin (und mir die Kriterien absolut schleierhaft sind, so es welche gibt).
Jedenfalls komme ich so auf
[mm]{\integral_{-1}^{1}}{\integral_{-\wurzel{1-a^2}}^{\wurzel{1-a^2}}{\integral_{-\wurzel{1-a^2-b^2}}^{\wurzel{1-a^2-b^2}}}{\integral_{-\wurzel{1-a^2-b^2-c^2}}^{\wurzel{1-a^2-b^2-c^2}}} dd dc db da[/mm] = [mm]{\integral_{-1}^{1}}{\integral_{-\wurzel{1-a^2}}^{\wurzel{1-a^2}}{\integral_{-\wurzel{1-a^2-b^2}}^{\wurzel{1-a^2-b^2}}} 2\wurzel{1-a^2-b^2-c^2} dc db da[/mm]
Und jetzt "entartet" die Rechnung ein wenig. Deshalb meine Frage: Lohnt es sich, diesen Ansatz weiterzuverfolgen?
Stimmt die Ermittlung der Integrationsgrenzen?
Danke im Voraus und liebe Grüße,
Tobias
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:33 Mo 13.07.2009 | Autor: | statler |
Hi!
Du willst ja offenbar ganz vorne anfangen. Aber wenn du das Volumen der 3dimensionalen Kugel schon kennst, reicht ein Schritt; so, wie sich die 3-D-Kugel aus 2-D-Kreisscheiben zusammensetzt , so baut sich die 4-D-Kugel aus 3-D-Kugeln zusammen.
Versuch's mal.
Gruß aus HH-Harburg
Dieter
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:33 Mo 13.07.2009 | Autor: | wogie |
könnt gehn, is aber beliebig aufwendig.
Tipp:
Berechne das 4-D Gaußintegral
[mm]\int_{\IR^4} d^4x e^{-(x_1^2+x_2^2+x_3^2+x_4^2)}[/mm]
Auf 2 verschiedene arten.
Gruß wogie
|
|
|
|