www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Volumen, Koordinatentransf.
Volumen, Koordinatentransf. < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen, Koordinatentransf.: erste Ansätze
Status: (Frage) beantwortet Status 
Datum: 13:46 Sa 30.12.2006
Autor: E-Techniker

Aufgabe
Berechnen sie das Volumen B des Körpers im R³, welcher von 6 Ebenen eingegrenzt wird
[mm] x_{1}+2x_{2}+x_{3}=2 [/mm]
[mm] x_{1}+2x_{2}+x_{3}=-2 [/mm]

[mm] x_{1}+x_{2}+2x_{3}=1 [/mm]
[mm] x_{1}+x_{2}+2x_{3}=-1 [/mm]

[mm] 2x_{1}+x_{2}+x_{3}=3 [/mm]
[mm] 2x_{1}+x_{2}+x_{3}=-3 [/mm]

Hinweis : Nutzen sie dabei die Ebenengleichungen als Formeln für die Koordinatentransformation !

Hallo !

Ich benötige nur einen Ansatz. Ein Körper wird also von Flächen begrenzt, über Symmetrie wird nichts ausgesagt, also kann ich keine Zylinder oder Kugelkoordinaten anwenden. (?)

Wie verwende ich nun die Ebenengleichungen mit Bezug auf Koordinatentransformation  ?

Vielen Dank, wenn ich es an einem Beispiel verstehe, dann auch für mehrere  


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Volumen, Koordinatentransf.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 Sa 30.12.2006
Autor: riwe

ansatz war falsch, daher gelöscht

Bezug
                
Bezug
Volumen, Koordinatentransf.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:51 Sa 30.12.2006
Autor: E-Techniker

Es gibt sicherlich mehrere Möglichkeiten eine Aufgabe zu lösen, aber diese gehörte damals in den Themenkomplex (Mehrfach)Integrale, Volumen, Oberflächen etc. .. deshalb würd ich die Aufgabe schon gern mit diesen Mitteln lösen, nur weiß ich eben nicht wie ich ein Integral aufstellen soll, wenn hier Ebenen in Parameterform gegeben sind, aber dennoch danke für deine Lösungsidee !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de