www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Volumen Pyramide bestimmen
Volumen Pyramide bestimmen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen Pyramide bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Do 15.11.2012
Autor: Isabelle90

Aufgabe
Es seien h, r > 0 und P [mm] \subset \IR^3 [/mm] die Pyramide mit Grundfläche [mm] [-r,r]^2 [/mm] x [mm] \{0\} [/mm] und Spitze in (0,0,h). Bestimmen Sie das Volumen.

Hallo,

ich sitze gerade vor der oben angegebenen Aufgabe und weiß nicht so ganz, wie ich sie lösen kann... Ich darf dazu Cavalieri NICHT benutzen.

Nun habe ich überlegt, ob mir folgendes Korollar helfen könnte:
Sei M [mm] \subset \IR^n [/mm] beschränkt. Dann sind äquivalent:
1. M ist messbar
2. [mm] inf\{\lambda(U); M \subset U \subset \IR^n, U offen\}=sup\{\lambda(K); K \subset M, K kompakt\} [/mm]

Denn der Wert in 2. ist doch im Grunde das Volumen, oder?

Allerdings müsste ich dazu erst einmal eine Menge aufstellen, überprüfen, dass diese messbar ist und dann schließlich gesuchten Wert bestimmen. Aber meine Idee scheitert leider an der Tatsache, dass ich sie nicht ausführen kann... Kann mir jemand dabei helfen?
Ich würde mich freuen, wenn mir jemand beim Lösen der Aufgabe behilflich sein könnte!

Vielen Dank!

        
Bezug
Volumen Pyramide bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Do 15.11.2012
Autor: rainerS

Hallo!

> Es seien h, r > 0 und P [mm]\subset \IR^3[/mm] die Pyramide mit
> Grundfläche [mm][-r,r]^2\times\{0\}[/mm] und Spitze in (0,0,h).
> Bestimmen Sie das Volumen.
>  Hallo,
>
> ich sitze gerade vor der oben angegebenen Aufgabe und weiß
> nicht so ganz, wie ich sie lösen kann... Ich darf dazu
> Cavalieri NICHT benutzen.
>  
> Nun habe ich überlegt, ob mir folgendes Korollar helfen
> könnte:
>  Sei M [mm]\subset \IR^n[/mm] beschränkt. Dann sind äquivalent:
>  1. M ist messbar
>  2. [mm]inf\{\lambda(U); M \subset U \subset \IR^n, U offen\}=sup\{\lambda(K); K \subset M, K kompakt\}[/mm]
>  
> Denn der Wert in 2. ist doch im Grunde das Volumen, oder?
>  
> Allerdings müsste ich dazu erst einmal eine Menge
> aufstellen, überprüfen, dass diese messbar ist und dann
> schließlich gesuchten Wert bestimmen. Aber meine Idee
> scheitert leider an der Tatsache, dass ich sie nicht
> ausführen kann... Kann mir jemand dabei helfen?
>  Ich würde mich freuen, wenn mir jemand beim Lösen der
> Aufgabe behilflich sein könnte!

Wie wäre es mit einem Turm aus nach oben dünner werdenden Quadern mit quadratischer Grundfläche, so dass dieser Turm entweder ganz innerhalb der Pyramide liegt oder die Pyramide enthält. Im ersten Fall nimmst du abgeschlossene Quader, im zweiten Fall offene (also nur die inneren Punkte). Jeder der Quader ist Lebesgue-Borel-messbar, solange du maximal abzählbar viele davon hast, ist es daher auch der gesamte Turm.

Ich würde zum Beispiel n Quader mit Höhe $h/n$ nehmen. Da P ganz im äußeren Turm liegt, und der innere Turm ganz in P liegt, müsste es eigentlich reichen, wenn die Differenzmenge zwischen äußerem und innerem Turm bei Verfeinerung der Türme (also [mm] $n\to\infty$) [/mm] gegen eine Nullmenge geht.

Viele Grüße
   Rainer

Bezug
                
Bezug
Volumen Pyramide bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Sa 17.11.2012
Autor: Isabelle90

Vielen Dank für die Antwort! Die hat mir wirklich sehr weiter geholfen und ich glaube, dass ich das jetzt sogar richtig gut verstanden habe :)

Ich bin jetzt wie folgt vorgegangen:

[mm] \Delta [/mm] h = [mm] \bruch{h}{n} [/mm] und die unterste Grundfläche ist [mm] G_1, [/mm] und dann aufsteigend [mm] G_2, [/mm] ..., [mm] G_n [/mm]

[mm] V_{außen}=G_1 \Delta [/mm] h + [mm] G_2 \Delta [/mm] h + ... + [mm] G_n \Delta [/mm] h > [mm] V_P [/mm] > [mm] G_2 \Delta [/mm] h + [mm] G_3 \Delta [/mm] h + ...+ [mm] G_n \Delta [/mm] h = [mm] V_{innen} [/mm]

Differenz: [mm] G_1 \Delta [/mm] h [mm] \to [/mm] 0 (n [mm] \to \infty). [/mm]
Die Volumina des inneren und äußeren Stufenkörpers bilden eine Intervallschachtelung für das Pyramidenvolumen, sodass
[mm] V_P= \limes_{n\rightarrow\infty} V_{außen} [/mm] = [mm] \limes_{n\rightarrow\infty} V_{innen} [/mm]

Nun ist [mm] V_{außen} [/mm] = [mm] \Delta [/mm] h [mm] (G_1 [/mm] + [mm] G_2 [/mm] + ... + [mm] G_n) [/mm]
[mm] \bruch{G_2}{G_1} [/mm] = ( [mm] \bruch{h_2}{h_1})^2 [/mm] mit [mm] h_1=h, h_2=h- \bruch{h}{n} [/mm]
[mm] h_1 [/mm] ist der Abstand von [mm] G_1 [/mm] zur Pyramidenspitze, [mm] h_2 [/mm] der Abstand von [mm] G_2 [/mm] zur Pyramidenspitze
[mm] \Rightarrow \bruch{G_2}{G_1} [/mm] = [mm] \bruch{(n-1)^2}{n^2} [/mm]
ebenso: [mm] \bruch{G_3}{G_1} [/mm] = [mm] \bruch{(n-2)^2}{n^2}; [/mm] ... ; [mm] \bruch{G_n}{G_1} [/mm] = [mm] \bruch{1^2}{n^2} [/mm]
[mm] \Rightarrow V_{außen}= \Delta [/mm] h * [mm] G_1 [/mm] + [mm] \bruch{\Delta h}{n^2} (1^2 [/mm] + [mm] 2^2 [/mm] + ... + [mm] (n-1)^2)*G_1 [/mm]

[mm] 1^2 [/mm] + [mm] 2^2 [/mm] + ... + [mm] n^2 [/mm] = [mm] \bruch{n(n+1)(2n+1)}{6} [/mm]
[mm] 1^2 [/mm] + [mm] 2^2 [/mm] + ... + [mm] (n-1)^2 [/mm] = [mm] \bruch{n(n+1)(2n+1)}{6} [/mm] - [mm] n^2= \bruch{2n^3 - 3n^2 + n}{6} [/mm]

[mm] \Rightarrow V_{außen} [/mm] = [mm] \Delta h*G_1 [/mm] + [mm] \bruch{\Delta h}{n^2}*\bruch{2n^3 - 3n^2 + n}{6}*G_1 [/mm]

[mm] \Delta [/mm] h= [mm] \bruch{h}{n} [/mm]

[mm] V_{außen} [/mm] = [mm] \bruch{h}{n}*G_1 [/mm] + [mm] \bruch{h}{6}* [/mm] (2 - [mm] \bruch{3}{n} [/mm] + [mm] \bruch{1}{n^2})*G_1 [/mm]

Bei n [mm] \to \infty [/mm] streben [mm] \bruch{h}{n}, \bruch{3}{n} [/mm] und [mm] \bruch{1}{n^2} [/mm] gegen 0, also gilt für n [mm] \to \infty: [/mm]
[mm] V_{außen} \to \bruch{2h}{6}*G_1 [/mm] = [mm] \bruch{1}{3} G_1 [/mm] h = [mm] V_P [/mm]

Ist das soweit korrekt?

Nun frage mich mich allerdings, ob ich die Grundfläche auch noch genauer angeben kann.
Es wird ja gesagt, dass die Pyramide die Grundfläche [mm] [-r,r]^2 [/mm] x {0} hat. Bedeutet das, dass die Eckpunkte (r,r,0), (r, -r,0), (-r,r,0) und (-r,-r,0) sind?
Oder sagt mir das [mm] [-r,r]^2 [/mm] nur aus, dass die in dem Intervall liegen und ich kann keine genaue Aussage über die Eckpunkte machen?
Weil wenn das die Eckpunkte wären, könnte ich ja noch sagen, dass [mm] G_1= [/mm] 4 [mm] r^2 [/mm] ist, oder?

Und das schließlich noch am Schluss einsetzen, dann ergäbe sich:
[mm] V_P [/mm] = [mm] \bruch{1}{3}*4r^2*h [/mm] = [mm] \bruch{4}{3} r^2 [/mm] *h

Viele Grüße!

Bezug
                        
Bezug
Volumen Pyramide bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Sa 17.11.2012
Autor: rainerS

Hallo!

> Vielen Dank für die Antwort! Die hat mir wirklich sehr
> weiter geholfen und ich glaube, dass ich das jetzt sogar
> richtig gut verstanden habe :)
>  
> Ich bin jetzt wie folgt vorgegangen:
>  
> [mm]\Delta[/mm] h = [mm]\bruch{h}{n}[/mm] und die unterste Grundfläche ist
> [mm]G_1,[/mm] und dann aufsteigend [mm]G_2,[/mm] ..., [mm]G_n[/mm]
>  
> [mm]V_{außen}=G_1 \Delta[/mm] h + [mm]G_2 \Delta[/mm] h + ... + [mm]G_n \Delta[/mm] h
> > [mm]V_P[/mm] > [mm]G_2 \Delta[/mm] h + [mm]G_3 \Delta[/mm] h + ...+ [mm]G_n \Delta[/mm] h =
> [mm]V_{innen}[/mm]
>  
> Differenz: [mm]G_1 \Delta[/mm] h [mm]\to[/mm] 0 (n [mm]\to \infty).[/mm]
>  Die Volumina
> des inneren und äußeren Stufenkörpers bilden eine
> Intervallschachtelung für das Pyramidenvolumen, sodass
>  [mm]V_P= \limes_{n\rightarrow\infty} V_{außen}[/mm] =
> [mm]\limes_{n\rightarrow\infty} V_{innen}[/mm]
>  
> Nun ist [mm]V_{außen}[/mm] = [mm]\Delta[/mm] h [mm](G_1[/mm] + [mm]G_2[/mm] + ... + [mm]G_n)[/mm]
>  [mm]\bruch{G_2}{G_1}[/mm] = ( [mm]\bruch{h_2}{h_1})^2[/mm] mit [mm]h_1=h, h_2=h- \bruch{h}{n}[/mm]
>  
> [mm]h_1[/mm] ist der Abstand von [mm]G_1[/mm] zur Pyramidenspitze, [mm]h_2[/mm] der
> Abstand von [mm]G_2[/mm] zur Pyramidenspitze
> [mm]\Rightarrow \bruch{G_2}{G_1}[/mm] = [mm]\bruch{(n-1)^2}{n^2}[/mm]
>  ebenso: [mm]\bruch{G_3}{G_1}[/mm] = [mm]\bruch{(n-2)^2}{n^2};[/mm] ... ;
> [mm]\bruch{G_n}{G_1}[/mm] = [mm]\bruch{1^2}{n^2}[/mm]
>  [mm]\Rightarrow V_{außen}= \Delta[/mm] h * [mm]G_1[/mm] + [mm]\bruch{\Delta h}{n^2} (1^2[/mm]
> + [mm]2^2[/mm] + ... + [mm](n-1)^2)*G_1[/mm]
>  
> [mm]1^2[/mm] + [mm]2^2[/mm] + ... + [mm]n^2[/mm] = [mm]\bruch{n(n+1)(2n+1)}{6}[/mm]
>  [mm]1^2[/mm] + [mm]2^2[/mm] + ... + [mm](n-1)^2[/mm] = [mm]\bruch{n(n+1)(2n+1)}{6}[/mm] - [mm]n^2= \bruch{2n^3 - 3n^2 + n}{6}[/mm]
>  
> [mm]\Rightarrow V_{außen}[/mm] = [mm]\Delta h*G_1[/mm] + [mm]\bruch{\Delta h}{n^2}*\bruch{2n^3 - 3n^2 + n}{6}*G_1[/mm]
>
> [mm]\Delta[/mm] h= [mm]\bruch{h}{n}[/mm]
>  
> [mm]V_{außen}[/mm] = [mm]\bruch{h}{n}*G_1[/mm] + [mm]\bruch{h}{6}*[/mm] (2 -
> [mm]\bruch{3}{n}[/mm] + [mm]\bruch{1}{n^2})*G_1[/mm]
>  
> Bei n [mm]\to \infty[/mm] streben [mm]\bruch{h}{n}, \bruch{3}{n}[/mm] und
> [mm]\bruch{1}{n^2}[/mm] gegen 0, also gilt für n [mm]\to \infty:[/mm]
>  
> [mm]V_{außen} \to \bruch{2h}{6}*G_1[/mm] = [mm]\bruch{1}{3} G_1[/mm] h =
> [mm]V_P[/mm]
>  
> Ist das soweit korrekt?

Ich habe nicht im einzelnen nachgerechnet, aber das Prinzip erscheint mir richtig.

> Nun frage mich mich allerdings, ob ich die Grundfläche
> auch noch genauer angeben kann.
> Es wird ja gesagt, dass die Pyramide die Grundfläche
> [mm][-r,r]^2[/mm] x {0} hat. Bedeutet das, dass die Eckpunkte
> (r,r,0), (r, -r,0), (-r,r,0) und (-r,-r,0) sind?

So verstehe ich die Aufgabe: dass P eine quadratische Pyramide mit Grundseitenlänge r ist.

>  Oder sagt mir das [mm][-r,r]^2[/mm] nur aus, dass die in dem
> Intervall liegen und ich kann keine genaue Aussage über
> die Eckpunkte machen?
>  Weil wenn das die Eckpunkte wären, könnte ich ja noch
> sagen, dass [mm]G_1=[/mm] 4 [mm]r^2[/mm] ist, oder?
>  
> Und das schließlich noch am Schluss einsetzen, dann
> ergäbe sich:
>  [mm]V_P[/mm] = [mm]\bruch{1}{3}*4r^2*h[/mm] = [mm]\bruch{4}{3} r^2[/mm] *h

[ok]

Viele Grüße
   Rainer


Bezug
                                
Bezug
Volumen Pyramide bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:02 Sa 17.11.2012
Autor: Isabelle90

Vielen lieben Dank :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de