www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Volumen des Standardsimplex
Volumen des Standardsimplex < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen des Standardsimplex: Gibts einen Trick?
Status: (Frage) beantwortet Status 
Datum: 11:54 Fr 29.06.2007
Autor: max3000

Aufgabe
Berechnen Sie das n-dimensionale Volumen des Standardsimplex [mm] S_{n}\in\IR^{2}, [/mm]
[mm] S_{n}:=\{x=(x_{1},...,x_{n})\in\IR^{n};x_{1},...,x_{n}\ge0,x_{1}+...+x_{n}\le1\} [/mm]

Hallo.

Ich weiß bereits, dass [mm] \bruch{1}{n!} [/mm] rauskommen muss, und dass es da irgendeine Rekursionsformel gibt, aber die find ich einfach nicht.

Kann mir da jemand weiterhelfen?
Ich habs so weit schon hinbekommen:

Man wähle [mm] x_{1}\in[0,1], [/mm] dann [mm] x_{2}\in[0,1-x_{1}] [/mm] und so weiter bis [mm] x_{n}\in[1-x_{1}-...-x_{n-1}]. [/mm]

Mit Fubini hab ich dann mal die Volumenformel aufgestellt:
[mm] vol_{n}S_{n}=\integral_{x_{1}=0}^{1}\integral_{x_{2}=0}^{1-x_{1}}...\integral_{x_{n}=0}^{1-x_{1}-...-x_{n-1}}1dx_{n}...dx_{2}dx_{1} [/mm]
[mm] =\integral_{x_{1}=0}^{1}\integral_{x_{2}=0}^{1-x_{1}}...\integral_{x_{n-1}=0}^{1-x_{1}-...-x_{n-2}}(1-x_{1}-...-x_{n-1})dx_{n-1}...dx_{2}dx_{1} [/mm]
[mm] =\integral_{x_{1}=0}^{1}\integral_{x_{2}=0}^{1-x_{1}}...\integral_{x_{n-1}=0}^{1-x_{1}-...-x_{n-2}}(1-\summe_{i=1}^{n}x_{i})dx_{n-1}...dx_{2}dx_{1} [/mm]

Hier komm ich jetzt nicht weiter. ich habe zwar die 1 als [mm] vol_{n-1}, [/mm] aber den Rest mit der Summe muss ich irgendwie noch verarbeiten.

Hat jemand eine Idee wie? Oder ist das der komplett falsche Ansatz.

Schonmal vielen Dank.
Grüße
Max

        
Bezug
Volumen des Standardsimplex: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 Fr 29.06.2007
Autor: Leopold_Gast

Ich würde Fubini nur einmal anwenden, um eine Rekursionsbeziehung zu bekommen. Das Volumen des [mm]n[/mm]-dimensionalen Simplexes sei [mm]V_n[/mm]. Dann geht es doch nur darum,

[mm]V_{n+1} = \frac{1}{n+1} \, V_n \, , \ \ n \geq 1[/mm]

nachzuweisen. Mit [mm]V_1 = 1[/mm] ist man dann fertig.

Konkret beginnt man so:

[mm]V_{n+1} = \int_0^1~\left( \int \limits_{x_1 + \ldots + x_n \leq 1 - x_{n+1}} \mathrm{d}(x_1, \ldots, x_n) \right)~\mathrm{d}x_{n+1}[/mm]

Wenn beim inneren Integral in der Ungleichung rechts 1 stünde, wäre man ja am Ziel. Da steht aber [mm]1 - x_{n+1}[/mm]. Für das innere Integral ist das aber eine Konstante. Man führt daher mit

[mm]x_1 = \left( 1 - x_{n+1} \right) t_1 \, , \ x_2 = \left( 1 - x_{n+1} \right) t_2 \, , \ \ldots \, , \ x_n = \left( 1 - x_{n+1} \right) t_n[/mm]

neue Variable ein. Die Funktionalmatrix ist eine Diagonalmatrix, deren Determinante also unmittelbar berechenbar. Und die Substitutionsformel für Bereichsintegrale bringt dich jetzt ans Ziel.

Bezug
                
Bezug
Volumen des Standardsimplex: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 15:22 Mi 04.07.2007
Autor: max3000

Vielen Dank.

Jetzt hab ichs verstanden. Hat nur ein bisschen gedauert, wegen anderer Begriffswelt.

Das ist ja einfach nur die Transformationsformel.

Grüße
Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de