www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Volumen eines Kegels
Volumen eines Kegels < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen eines Kegels: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:29 Do 28.05.2009
Autor: Nicicole

Aufgabe
Die Seitenlänge eines Kegels beträgt 25 cm. Wie groß ist der Radius r und die Höhe h zu wählen, damit das Kegelvolumen maximal wird?

ich bitte um korrektur.

1.) V= 1/3 [mm] \pi r^{2} [/mm] h
   [mm] s^{2} [/mm] = [mm] r^{2} [/mm] + [mm] h^{2} [/mm]
2.) V(r,h)= 1/3 [mm] \pi r^{2} [/mm] h
3.) [mm] r^{2} =s^{2} [/mm]  - [mm] h^{2} [/mm]
4.) V(h) = 1/3 * [mm] \pi* [/mm] h * [mm] (s^{2} [/mm]  - [mm] h^{2}) [/mm]
     V(h) = -1/3 * [mm] \pi* h^{3} [/mm] + 208/ 1/3* [mm] \pi* [/mm] h
5.) D(f) = {0;24,9}
6.) V(h) = -1,0472 * [mm] h^{3} [/mm] + 654,4984 * h
     V'(h) = 3,1416 * [mm] h^{2} [/mm] + 654,4984
         0= 3,1416 *  [mm] h^{2} [/mm] + 654,4984
         h= 14,4337

[mm] s^{2} [/mm] = [mm] r^{2} [/mm] + [mm] h^{2} [/mm]
[mm] r^{2} =s^{2} [/mm]  - [mm] h^{2} [/mm]
r= 20,4124

        
Bezug
Volumen eines Kegels: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 Do 28.05.2009
Autor: leduart

Hallo Nicole
> Die Seitenlänge eines Kegels beträgt 25 cm. Wie groß ist
> der Radius r und die Höhe h zu wählen, damit das
> Kegelvolumen maximal wird?
>  ich bitte um korrektur.
>  
> 1.) V= 1/3 [mm]\pi r^{2}[/mm] h
>     [mm]s^{2}[/mm] = [mm]r^{2}[/mm] + [mm]h^{2}[/mm]
>  2.) V(r,h)= 1/3 [mm]\pi r^{2}[/mm] h
>  3.) [mm]r^{2} =s^{2}[/mm]  - [mm]h^{2}[/mm]
>  4.) V(h) = 1/3 * [mm]\pi*[/mm] h * [mm](s^{2}[/mm]  - [mm]h^{2})[/mm]

wenn du einfach die Zahlenfaktoren stehen laesst ist es einfacher:
[mm] V(h)=\pi/3*(hs^2-h^3) [/mm]
jetzt ableiten.  die [mm] \pi/3 [/mm] stehen lassen, die gehen dann weg, wenn du V'=0 setzest.Wenn du auch s drin laesst brauchst du den TR nur einmal.
)

>       V(h) = -1/3 * [mm]\pi* h^{3}[/mm] + 208/ 1/3* [mm]\pi*[/mm] h
>  5.) D(f) = {0;24,9}
>  6.) V(h) = -1,0472 * [mm]h^{3}[/mm] + 654,4984 * h
>       V'(h) = 3,1416 * [mm]h^{2}[/mm] + 654,4984
>           0= 3,1416 *  [mm]h^{2}[/mm] + 654,4984
>           h= 14,4337
>  
> [mm]s^{2}[/mm] = [mm]r^{2}[/mm] + [mm]h^{2}[/mm]
>   [mm]r^{2} =s^{2}[/mm]  - [mm]h^{2}[/mm]
>   r= 20,4124

Alles richtig, aber schoener waer [mm] h=s/\wurzel{3} [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de