www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Volumen mit 3-Integral
Volumen mit 3-Integral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen mit 3-Integral: Ansatzfindung
Status: (Frage) beantwortet Status 
Datum: 22:38 Mo 13.05.2013
Autor: xts

Aufgabe
Welches Volumen V hat ein Körper, der durch Drehung der Kurve z=1+cos x, 0 ≤ x ≤ [mm] \pi [/mm] um die z-Achse entsteht?

1. Kann ich die Funktion so lassen oder muss ich die zB in Zylinderkoordinaten o.ä. umrechnen?

2. Wären x=0 und [mm] x=\pi [/mm] die Integrationsgrenzen? Dann würde der Körper ja wie ein "Mauelwurfshügel" aussehen.

3. Wo bekomme ich dann die Grenzen für die anderen Integrale her? Würde ich da einfach weitergehen in der Periode?

4. Bisher hatten wir nur Doppelintegrale, funktionieren die Regeln dann alle analog zu den Mehrfachintegralen oder gibt es noch Randbedingungen o.ä.?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Volumen mit 3-Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Mo 13.05.2013
Autor: notinX

Hallo,

> Welches Volumen V hat ein Körper, der durch Drehung der
> Kurve z=1+cos x, 0 ≤ x ≤ [mm]\pi[/mm] um die z-Achse entsteht?
>  1. Kann ich die Funktion so lassen oder muss ich die zB in
> Zylinderkoordinaten o.ä. umrechnen?

eine Umrechnung ist nicht nötig.

>  
> 2. Wären x=0 und [mm]x=\pi[/mm] die Integrationsgrenzen? Dann
> würde der Körper ja wie ein "Mauelwurfshügel" aussehen.

Ja, das sind die Grenzen.

>  
> 3. Wo bekomme ich dann die Grenzen für die anderen
> Integrale her? Würde ich da einfach weitergehen in der
> Periode?

Welche anderen Integrale?

>  
> 4. Bisher hatten wir nur Doppelintegrale, funktionieren die
> Regeln dann alle analog zu den Mehrfachintegralen oder gibt
> es noch Randbedingungen o.ä.?

Welche Regeln meinst Du?
Du brauchst hierfür übrigens kein Mehrfachintegral. Schau mal bei Wiki o.ä. nach Rotationsvolumen.

>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

Gruß,

notinX

Bezug
                
Bezug
Volumen mit 3-Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:57 Di 14.05.2013
Autor: xts

Da das Ergebnis V= [mm] \pi^3 [/mm] -4 [mm] \pi [/mm] sein soll und der ganze Aufgabenzettel nur Doppel- und Mehrfachintegrale enthält, war ich bei dieser Aufgabe auch davon ausgegangen.

Wenn es nur ein "normales Rotationsvolumen" ist, muss ich ja für die z-Achsenrotation die Umkehrfunktion bilden oder?

Bezug
                        
Bezug
Volumen mit 3-Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 09:51 Di 14.05.2013
Autor: notinX


> Da das Ergebnis V= [mm]\pi^3[/mm] -4 [mm]\pi[/mm] sein soll und der ganze

Ich komme auf ein anderes Ergebnis.

> Aufgabenzettel nur Doppel- und Mehrfachintegrale enthält,
> war ich bei dieser Aufgabe auch davon ausgegangen.

Man kann das auch mit einem Dreifachintegral ausrechnen - ist aber nicht nötig.

>  
> Wenn es nur ein "normales Rotationsvolumen" ist, muss ich
> ja für die z-Achsenrotation die Umkehrfunktion bilden
> oder?

Nein, wieso? Du kannst auch einfach $f(x)=z$ setzen.

Gruß,

notinX

Bezug
                        
Bezug
Volumen mit 3-Integral: ohne Umkehrfunktion
Status: (Antwort) fertig Status 
Datum: 10:36 Di 14.05.2013
Autor: Al-Chwarizmi


> Da das Ergebnis V= [mm]\pi^3[/mm] -4 [mm]\pi[/mm] sein soll und der ganze
> Aufgabenzettel nur Doppel- und Mehrfachintegrale enthält,
> war ich bei dieser Aufgabe auch davon ausgegangen.
>  
> Wenn es nur ein "normales Rotationsvolumen" ist, muss ich
> ja für die z-Achsenrotation die Umkehrfunktion bilden
> oder?

Nein, das musst du nicht. Es ist angenehmer, das Integral
aus einem Integral nach z zu einem Integral mit der
Integrationsvariablen x zu transformieren:

     $\ V\ =\ [mm] \pi\ [/mm] *\ [mm] \integral_{z=0}^{z=2}x(z)^2\ [/mm] dz\ =\ [mm] \pi\ [/mm] *\ [mm] \integral_{x=\pi}^{x=0}x^2\ *\frac{dz}{dx}*dx$ [/mm]

Beachte insbesondere die Grenzen sowie deren Reihenfolge !
[mm] $\frac{dz}{dx}$ [/mm] steht natürlich für die Ableitung der
Funktion z(x) nach der Variablen x .
Das Ergebnis  [mm] $\pi^3-4\,\pi$ [/mm]  für das gesuchte Volumen ist
übrigens richtig. Da muss sich notinX wohl geirrt haben.

LG ,   Al-Chw.



Bezug
                        
Bezug
Volumen mit 3-Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Di 14.05.2013
Autor: fred97


> Aufgabenzettel nur Doppel- und Mehrfachintegrale enthält,
> war ich bei dieser Aufgabe auch davon ausgegangen.
>  


Die bekannte(n) Formel(n) für das Volumen eines Rotationskörpers ergeben sich aus dem Prinzip von Cavalieri.

http://de.wikipedia.org/wiki/Prinzip_von_Cavalieri

Die strenge Begründung dieses Prinzips erfolgt mit dem Satz von Fubini.

FRED

Bezug
                                
Bezug
Volumen mit 3-Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:46 Di 14.05.2013
Autor: xts

Danke, hab's jetzt mit Zylinderkoordinaten und nem 3-fach-Integral gelöst und habe das gewünschte Ergebnis bekommen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de