www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Volumenberechnung
Volumenberechnung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenberechnung: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 13:59 Di 06.06.2006
Autor: muh06

Aufgabe
P(u|v) sei ein beliebiger Punkt auf der Kurve [mm] \ K_t(x)= \bruch{2x}{t²+x²} [/mm] im 1.Feld. Das Dreieck mit den Ecken  O(0|0), Q(u|0) und P(u|v) erzeugt bei Rotation um die X-Achse einen Kegel. Bestimme Pso, dass der Rauminhalt dieses Kegels extremal wird. Untersuche, ob es sich um ein Maximum oder um ein Minimum handelt.

Hallo erstmal,
Ich weiss nicht so recht wie ich an die Aufgabe herangehen soll.
Meine bisherigen Überlegungen sehen wie folgt aus:
Wenn [mm] \ A = [/mm] extremal wird, dann muss [mm] \ V= [/mm] ebenfalls extremal werden, also brechne ich u und v für den Flächeninhalt.
Dazu folgende Formal: [mm] \ A= \ 0.5a + \f(a) [/mm]
Wenn ich nun die Funktion einsetze erhalte ich [mm] \ A= \bruch {u^2}{t^2 + u^2} [/mm].
Nun bilde ich davon die 1. Ableitung und setze sie 0. Dann komme ich auf [mm] \ 0= \ t^2 [/mm], und nun weiss ich nicht weiter.


        
Bezug
Volumenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 Di 06.06.2006
Autor: ardik

Hallo muh06,


>  Meine bisherigen Überlegungen sehen wie folgt aus:
>  Wenn [mm]\ A =[/mm] extremal wird, dann muss [mm]\ V=[/mm] ebenfalls
> extremal werden

Nein!
Ein langer schlanker Kegel (großes u) hat geringeres Volumen als ein kurzer breiter, wenn die Querschnittfläche gleich ist.

Der Grundkreis-Radius v des Kegels geht nämlich quadratisch in die Volumenformel ein.
Such Dir also die Formel für's Kegelvolumen und mach damit weiter.



Aber noch ein paar Anmerkungen:

> Flächeninhalt.
>  Dazu folgende Formal: [mm]\ A= \ 0.5a + \f(a)[/mm]

Äh, arger Vertipp-Fehler, denke ich, denn im Folgenden hast Du die (richtige) Fächeninhalts-Formel korrekt angewendet.

>  Wenn ich nun
> die Funktion einsetze erhalte ich [mm]\ A= \bruch {u^2}{t^2 + u^2} [/mm].

ja.

>  
> Nun bilde ich davon die 1. Ableitung und setze sie 0. Dann
> komme ich auf [mm]\ 0= \ t^2 [/mm], und nun weiss ich nicht weiter.

Warum löst Du nach t auf? Du suchst doch eine x-Koordinate, nämlich u!
Dann erhältst Du hier freilich auch u=0. Das bedeutet schlicht, dass der Flächeninhalt dieses Dreieckes für u=0 extremal wird (nämlich minimal, nämlich null). Wenn ich mir den Graphen zu f(x) ansehe ist es anschaulich plausibel, dass das Dreieck mit größer werdendem u auch einen immer größer werdenden Flächeninhalt hat.

So, ich hoffe, ich habe ausreichend weiterhelfen können! ;-)

Schöne Grüße,
ardik

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de