Volumenberechnung < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:15 Sa 20.11.2004 | Autor: | Bastiane |
Hallo!
Wieder eine schöne Aufgabe:
Berechnen Sie das Volumen des Durchschnitts der beiden Zylinder
[mm] Z_1=\{(x,y,z)\in\IR^3, x^2+y^2\le 1\}
[/mm]
[mm] Z_2=\{(x,y,z)\in\IR^3, y^2+z^2\le 1\}
[/mm]
Nachtrag von Bastiane: hier stand zuerst [mm] \ge [/mm] 1, was natürlich Blödsinn ist!
Als erstes habe ich mir diese beiden Zylinder mal aufgezeichnet. Dann habe ich mich gefragt, wie ich denn den Schnitt davon berechne: Das müsste doch folgende Menge sein, oder?
[mm] Z_1 \cap Z_2 =\{(x,y,z)\in\IR^3, (x^2+y^2)(y^2+z^2)\le 1\}
[/mm]
Oder darf man die nicht mutliplizieren sondern muss nur ein "und" dazwischen setzen?
Naja, jedenfalls frage ich mich, ob ich das jetzt einfach als "Funktion" in das Integral einsetzen darf und dann mithilfe von [mm] \mu [/mm] und Fubini und so das ausrechnen kann wie bei Kreisen und Kugeln...
Wäre schön, wenn mir jemand beim Denken helfen würde...
Viele Grüße
Bastiane
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:43 Sa 20.11.2004 | Autor: | Micha |
Hallo Christiane!
Vielleicht hilft dir dieser Link etwas weiter:
http://mo.mathematik.uni-stuttgart.de/kurse/kurs15/seite132.html
Du musst nur darauf achten, dass die Variablen dort anders heißen, aber das Verfahren sollte auch mit anderen Bezeichnern gehen, musst du halt nur die Gleichung etwas modifizieren.
Ich hoffe das hilft dir weiter.
Du musst aber darauf achten, dass du als Begründung mit aufführst, dass eine beschränkte Menge im [mm] $\IR^n$ [/mm] überhaupt integrierbar ist. Wir hatten das als zusätzlichen Satz in den Hausaufgaben und konnten das deshalb verwenden.
Liebe Grüße,
Micha
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:48 Di 23.11.2004 | Autor: | Bastiane |
Hallo Micha!
Bedankt hatte ich mich glaube ich schon für diesen Link.
Allerdings habe ich jetzt festgestellt, dass ich, wenn ich auf die Ausgangsseite gehe - ich kannte die Seite ja - und dann bei den Aufgaben klicke, nur die Aufgabenstellung, jedoch nicht die Lösung bekomme. Dafür wird ein Benutzername und ein Passwort benötigt. Hast du das, oder wie bist du an die Lösung gekommen? (Nur für den Fall, dass ich demnächst nochmal eine Aufgabe von dort gebrauchen könnte...)
Und dann noch eine Frage, die du mir vielleicht beantworten kannst:
Ist das richtig, dass es da, bezüglich der Reihenfolge der Integrale, mehrere Möglichkeiten gibt? In dem Beispiel auf der Seite wird zuerst nach y integriert, dann nach z. Könnte ich nicht auch nach y und dann nach x integrieren? Oder zuerste nach x und dann nach y - oder wie auch immer? Ich meine, das ist in diesem Fall egal, da das ganze symmetrisch ist. Was meinst du?
> Du musst aber darauf achten, dass du als Begründung mit
> aufführst, dass eine beschränkte Menge im [mm]\IR^n[/mm] überhaupt
> integrierbar ist. Wir hatten das als zusätzlichen Satz in
> den Hausaufgaben und konnten das deshalb verwenden.
Hat der Satz zufällig einen Namen? Ich glaube nämlich nicht, dass wir den in dieser Aufgabe noch groß beweisen sollen, oder ist der Beweis sehr kurz?
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:56 Di 23.11.2004 | Autor: | Micha |
Hallo Christiane!
> Hallo Micha!
> Bedankt hatte ich mich glaube ich schon für diesen Link.
> Allerdings habe ich jetzt festgestellt, dass ich, wenn ich
> auf die Ausgangsseite gehe - ich kannte die Seite ja - und
> dann bei den Aufgaben klicke, nur die Aufgabenstellung,
> jedoch nicht die Lösung bekomme. Dafür wird ein
> Benutzername und ein Passwort benötigt. Hast du das, oder
> wie bist du an die Lösung gekommen? (Nur für den Fall, dass
> ich demnächst nochmal eine Aufgabe von dort gebrauchen
> könnte...)
Also von einem Benutzernamen oder Passwort weiss ich leider nichts. Ich gucke gleich nochmal nach.
>
> Und dann noch eine Frage, die du mir vielleicht beantworten
> kannst:
> Ist das richtig, dass es da, bezüglich der Reihenfolge der
> Integrale, mehrere Möglichkeiten gibt? In dem Beispiel auf
> der Seite wird zuerst nach y integriert, dann nach z.
> Könnte ich nicht auch nach y und dann nach x integrieren?
> Oder zuerste nach x und dann nach y - oder wie auch immer?
> Ich meine, das ist in diesem Fall egal, da das ganze
> symmetrisch ist. Was meinst du?
Das ist die Kernaussage des Satzes von Fubini: Wenn eine Funktion integrierbar ist
so darf man die Reihenfolge der Integrale vertauschen. Du musst dabei nur beachten,
dass unter Umständen ein Integral zu berechnen geht, die Funktion aber gar nicht
integrierbar ist. Dies kann sich z.B. dadurch bemerkbar machen, dass du bei einer anderen
Integralreihenfolge einen anderen Wert für das Integral als Ergebnis erhälst. Ist dies der Fall
kannst du zumindest schließen, dass f nicht integrierbar war (oder du dich verrechnet hast ).
Der richtige Weg ist deshalb erstmal zu zeigen, dass so ein Integral überhaupt existiert. Für
beschränkte Mengen im [mm] $\IR^n$ [/mm] ist das schon gegeben (siehe unten).
>
> > Du musst aber darauf achten, dass du als Begründung mit
>
> > aufführst, dass eine beschränkte Menge im [mm]\IR^n[/mm] überhaupt
>
> > integrierbar ist. Wir hatten das als zusätzlichen Satz in
>
> > den Hausaufgaben und konnten das deshalb verwenden.
> Hat der Satz zufällig einen Namen? Ich glaube nämlich
> nicht, dass wir den in dieser Aufgabe noch groß beweisen
> sollen, oder ist der Beweis sehr kurz?
>
Aus der Beschränkheit folgt, dass [mm] $inf(A_i)$ [/mm] und [mm] $sup(A_i)$ [/mm] existiert für jedes $i = 1, ..., n$ und
$A = [mm] A_1 \times A_2 \times [/mm] ... [mm] \times A_n$.
[/mm]
Dann ist
[mm] $\mu_n [/mm] (A) [mm] \le \mu_1 (A_1) [/mm] * [mm] \mu_1 (A_2) [/mm] * ... * [mm] \mu_1 (A_n)$
[/mm]
$= [mm] (sup(A_1)-inf(A_1))*... [/mm] * [mm] (sup(A_n)-inf(A_n)) [/mm] = M$
Das entspricht genau dem n-Quader, in dem deine Menge A liegt. Nun kannst du dir eine Folge konstruieren,
die dir deine Menge A approximiert und dann wendest du den Satz von Lebesgue (Satz über die dominierte Konvergenz) an und es folgt die Aussage, dass die Menge A integrierbar ist.
Gruß Micha
|
|
|
|