www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Volumenberechnung
Volumenberechnung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Di 30.10.2007
Autor: Beliar

Aufgabe
Kein direkte Aufgabe!

Hallo,
habe da mal ne Frage, ich möchte das Volumen einer Pyramide berechen. Gegeben sind die Punkte A;B;C;D und S für die Spitze(Höhe der Pyramide).
Ich habe die Länge der Pyramide berechnet und weiss das die Grundfläche quardatisch ist.Wie kann man dann die Höhe am einfachsten ermitteln?
Dachte ich bilde die Diagonalen der Grundfläche, der Schnittpunkt ist dann ja auch der Punkt durch den (mit Hilfe eines Lots) die Spitze läuft.
Aber geht das auch anders, und wenn ja wie, mir schweb da sowas wie eine Mittelsenkrechte vor?
Dankr für jeden Tip
Beliar

        
Bezug
Volumenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Di 30.10.2007
Autor: SusanneK

Hallo Beliar,
wenn S die schräge Seite von der Grundfläche zur Spitze ist, und du diese Länge hast - so habe ich dich zumindest verstanden - dann kannst du die Höhe mit dem Phythagoras bestimmen.

LG, Susanne.

Bezug
                
Bezug
Volumenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:45 Di 30.10.2007
Autor: Beliar

Nein, Von der Spitze fällt das Lot genau auf den Mittelpunkt der quadratischen Fläche.

Bezug
                        
Bezug
Volumenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 Di 30.10.2007
Autor: SusanneK

Tut mir leid !

Dann versteh ich die Frage nicht so richtig, kannst du mal ein paar Zahlen liefern ?

LG, Suanne.

Bezug
        
Bezug
Volumenberechnung: Pythagoras
Status: (Antwort) fertig Status 
Datum: 18:36 Di 30.10.2007
Autor: Loddar

Hallo Beliar!


Was stört dich an der Lösung mit der Diagonalen? Denn der Schnitt auf der Diagonalen der Grundfläche durch die Spitze liefert doch ein gleichschenkliges Dreieck. Wenn man davon nun eine Hälfte betrachtet, kann man Herrn Pythagoras bemühen:
[mm] $$\left|\overrightarrow{AS}\right|^2 [/mm] \ = \ [mm] h^2+\left(\bruch{1}{2}*\left|\overrightarrow{AC}\right|\right)^2$$ [/mm]
Dabei ist [mm] $\left|\overrightarrow{AS}\right|$ [/mm] die Länge einer Seitenkante der Pyramide und [mm] $\left|\overrightarrow{AC}\right|$ [/mm] die Länge der Grundflächendiagonalen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de