www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Volumenberechnung
Volumenberechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenberechnung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:32 Do 11.09.2008
Autor: robertl

Aufgabe
also wir haben die Aufgabe das Volumen eines Körpers der um die y-achse rotiert zu bestimmen
die werte die ich hatte waren einemal der Hochpunkt der bei (0/22) liegt also f(0)=22 daraus auch f´(0)=0 und f(-13.075)=0 und f(13.075)= 0
dadurch lässt sich eine Parabel bestimmen mit [mm] f(x)=ax^2+bx+c [/mm]
durch Interpolation kamm ich auf c=22, b=0 und a=-0,129
also f(x)= [mm] -0.129x^2+22 [/mm]
jetzt sollen wir den Volumen dieser Funktion bestrimmen der um die y-achse Rotiert und eine Art Kuppelform bildet.
zuerst muss ich ja die Umkehrfunktion bilden diese wäre
[mm] y=-0.129x^2+22 [/mm]
[mm] y-22=-0.129x^2 [/mm]
[mm] x^2=(y-22)/-0.129 [/mm]
x= [mm] \wurzel[2]{(y-22)/-0.129} [/mm]
das Wäre dan die Umkehrfunktion...stimmt das soweit??
nun muss ich dass in die Funktion  für V einsetzen also kommt daraus
V=pi* [mm] \integral_{0}^{22}{(\wurzel[2]{(y-22)/-0.129})^2dy} [/mm]
ist das richtig??
nun Forme ich das ganze um also
V=pi* [mm] \integral_{0}^{22}{ y-22/-0.129 dy} [/mm]
Die stammfunktion wäre ya dan   [mm] y^2-(22/-0.129)y [/mm]
also  pi* [mm] [y^2-(22/-0,129)y] [/mm] unterge Grenze 0 obere Grenze 22
daraus würde sichd anfür V ergeben
V=pi* [mm] [(22^2-(22/-0.129)*22)-(0)] [/mm]
DARAUS fOLGT V=pi*[484+3751.94]
also [mm] V=13307.6m^3 [/mm]

das wäre dan das Volumen ist das richtig oder habe ich da irgendwo ein unbemerkten Fehler eingebaut???
weil das Volumen scheint mir zu Groß und macht mich skeptisch...
würde mich freuen wenn das sich jemand anschauen könnte und mir sagen könnte ob da was falsch ist.
Danke

        
Bezug
Volumenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Do 11.09.2008
Autor: Adamantin


> also wir haben die Aufgabe das Volumen eines Körpers der um
> die y-achse rotiert zu bestimmen
>  die werte die ich hatte waren einemal der Hochpunkt der
> bei (0/22) liegt also f(0)=22 daraus auch f´(0)=0 und
> f(-13.075)=0 und f(13.075)= 0
>  dadurch lässt sich eine Parabel bestimmen mit
> [mm]f(x)=ax^2+bx+c[/mm]
>  durch Interpolation kamm ich auf c=22, b=0 und a=-0,129
>  also f(x)= [mm]-0.129x^2+22[/mm]

Ich glaube dir das jetzt einfach mal, da ich das nicht nachrechnen möchte, das ist ja eine elementare Sache, die du jederzeit überprüfen kannst, sie scheint vom Graphen zu stimmen, aber es geht uns hier ja ums Volumen, das kannst du mit jeder Funktion üben, also selbst wenn sie falsch sein sollte, wir wollen mal Volumen berechnen und Rotieren üben ^^

>  jetzt sollen wir den Volumen dieser Funktion bestrimmen
> der um die y-achse Rotiert und eine Art Kuppelform bildet.
>  zuerst muss ich ja die Umkehrfunktion bilden diese wäre
> [mm]y=-0.129x^2+22[/mm]
>  [mm]y-22=-0.129x^2[/mm]
>  [mm]x^2=(y-22)/-0.129[/mm]
>  x= [mm]\wurzel[2]{(y-22)/-0.129}[/mm]
>  das Wäre dan die Umkehrfunktion...stimmt das soweit??

[ok] Dickes ok von mir, wobei du bei einer Umkehrfunktion durchaus wieder x einsetzen darfst, macht man der Einfachheit halber und sieht gewohnter aus, aber y ist auch nicht unbedingt falsch ;)


>  nun muss ich dass in die Funktion  für V einsetzen also
> kommt daraus
>   V=pi*
> [mm]\integral_{0}^{22}{(\wurzel[2]{(y-22)/-0.129})^2dy}[/mm]
>  ist das richtig??
>  nun Forme ich das ganze um also
>  V=pi* [mm]\integral_{0}^{22}{ y-22/-0.129 dy}[/mm]
>  Die
> stammfunktion wäre ya dan   [mm]y^2-(22/-0.129)y[/mm]

[notok] stop, hier ist der erste Fehler, wie kommst du darauf, dass dies die Stammfunktion sei? Ich rechne so:

[mm] V=\pi*\integral_{0}^{22}{\bruch{y-22}{-0.129} dy}=\pi* \integral_{0}^{22}{(y-22)*(-0.129)^{-1}} dy}=\pi* \integral_{0}^{22}{\bruch{y}{-0,129}+\bruch{22}{0.129} dy} =\pi*[\bruch{y^2}{-2*0,129}+\bruch{22y}{0,129}]^{22}_0 [/mm]

Damit hättest du deine Stammfunktion, in die du nur noch 22 einsetzen brauchst.

> also  pi* [mm][y^2-(22/-0,129)y][/mm] unterge Grenze 0 obere Grenze
> 22
>  daraus würde sichd anfür V ergeben
>  V=pi* [mm][(22^2-(22/-0.129)*22)-(0)][/mm]
>  DARAUS fOLGT V=pi*[484+3751.94]
>  also [mm]V=13307.6m^3[/mm]
>  
> das wäre dan das Volumen ist das richtig oder habe ich da
> irgendwo ein unbemerkten Fehler eingebaut???
>  weil das Volumen scheint mir zu Groß und macht mich
> skeptisch...
>  würde mich freuen wenn das sich jemand anschauen könnte
> und mir sagen könnte ob da was falsch ist.
>  Danke

Das Volumen ist in der Tat groß, ich habe etwas mit 5800 oder so, allerdings ist es ja auch ein gigantisches Gefäß, das wären ca 22 cm Höhe, also ist die Zahl, die rauskommt, in [mm] cm^3, [/mm] das bedeutet ca [mm] 5800cm^3, [/mm] also 5,8 l...na warum nicht ^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de