www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Volumenberechnung
Volumenberechnung < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Di 22.02.2011
Autor: Ronjaaa

Aufgabe
Berechnen Sie das Volumen der Pyramide P, die als Grundfläche das Viereck ABCD mit A(2/2/0), B(7/4/0), C(4/8/0) und D (2/5/0) und als Spitze S (4/4/5) hat.

Hallo,
wir haben bisher in der Schule nur Volumina von dreiseitigen Pyramiden berechnet, nämlich mit V = 1/6 |AB°(ACxAD)| .
Deshalb habe ich überhaupt keine Ahnung, wie ich diese Aufgabe lösen soll.

Wär nett, wenn mir jemand weiterhelfen könnte.
Ich weiß, besonders weit bin ich noch nicht...

LG

        
Bezug
Volumenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Di 22.02.2011
Autor: kamaleonti

Hallo,

deine vierseitige Pyramide setzt sich aus zwei dreiseitigen zusammen, wenn du sie mit einer Ebene durch die Spitze S und eine Diagonale des Vierecks zerlegst. Hier wäre ein Ansatz, das Volumen der beiden dreiseitigen pyramiden zu berechnen und anschließen zu addieren.

LG

Bezug
                
Bezug
Volumenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:19 Di 22.02.2011
Autor: Ronjaaa

Vielen Dank für die schnelle Antwort.
Ich hab die Pyramide jetzt an der Strecke AC in zwei dreiseitige Pyramiden geteilt und die Volumina addiert. Ich hab 31,6 VE rausgebracht. Ob mein Ergebnis stimmt, weiß ich leider nicht, aber ich denke, der Weg müsste stimmen.
Also vielen Dank nochmal, hat mir echt geholfen! LG


Bezug
        
Bezug
Volumenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:51 Di 22.02.2011
Autor: abakus


> Berechnen Sie das Volumen der Pyramide P, die als
> Grundfläche das Viereck ABCD mit A(2/2/0), B(7/4/0),
> C(4/8/0) und D (2/5/0) und als Spitze S (4/4/5) hat.
>  Hallo,
> wir haben bisher in der Schule nur Volumina von
> dreiseitigen Pyramiden berechnet, nämlich mit V = 1/6
> |AB°(ACxAD)| .

Das glaube ich dir nicht. Bereits in Klasse 8 (spätestens in Klasse 9) solltet ihr schon einmal das Volumen einer Pyramide mit der bekannten Formel [mm] V=\bruch{1}{3}A_G\cdot [/mm] h berechnet haben. Dazu benötigt man keine Vektorrechnung.
Gruß Abakus

> Deshalb habe ich überhaupt keine Ahnung, wie ich diese
> Aufgabe lösen soll.
>
> Wär nett, wenn mir jemand weiterhelfen könnte.
> Ich weiß, besonders weit bin ich noch nicht...
>  
> LG


Bezug
                
Bezug
Volumenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:19 Mi 23.02.2011
Autor: Ronjaaa

Natürlich haben wir schon früher sämtliche Dinge an Pyramiden berechnet, aber zur Zeit haben wir eben Vektoren als großes Thema und müssen somit alles mit Vektoren berechnen.
LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de