www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Volumenberechnung (3 Zylinder)
Volumenberechnung (3 Zylinder) < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenberechnung (3 Zylinder): Cavalieri, Fubini
Status: (Frage) für Interessierte Status 
Datum: 10:49 Do 08.09.2005
Autor: AT-Colt

Servus,

nach langer Zeit habe ich auch mal wieder eine Frage...

Ich lerne gerade für eine Vordiplomsklausur und bin über folgende Aufgabe gestoßen:

Gegeben sei die Menge $M = [mm] \{(x,y,z) | x^2+y^2 \le 1, y^2+z^2 \le 1\}$. [/mm]
Berechne das Volumen der Menge im [mm] \IR^3. [/mm]
(Genaugenommen wurden die zwei Zylinder gegeben, die [mm] ${x_i}^2+{x_j}^2 \le [/mm] 1$ erfüllen sollten.)

Diese Aufgabe habe ich recht flux hinbekommen, aber dann habe ich den Einsatz erhöht und komme gleich mal nicht weiter ^^;

Was ist, wenn nun die Menge $M = [mm] \{(x,y,z) | x^2+y^2 \le 1, y^2+z^2 \le 1, x^2+z^2 \le 1 \}$ [/mm] gegeben ist? (Quasi der Schnitt aller drei achsenparallelen Kreiszylinder...)

Ich kann mir das Gebilde nichtmal richtig vorstellen ^^;

Ich bin soweit, dass ich es nach dem Cavalierischen Prinzip zerlegt habe zu
$M(z) = [mm] \{(x,y) | |x| \le min\{\wurzel{1-y^2}, \wurzel{1-z^2}\}, |y| \le min\{\wurzel{1-x^2}, \wurzel{1-z^2}\} \}$, [/mm] aber nun komme ich nicht weiter, ich weiss nicht, wie ich die Minima als Integralgrenzen einbauen soll, so dass sich ein geschlossener, lösbarer Ausdruck ergibt...

Man könnte jetzt auch nochmal Cavalieri anwenden und $M(z)(y)$ ermitteln, aber da stehe ich vor dem gleichen Problem :(

Während ich das geschrieben habe, ist mir eine Idee zu $M(z)(y)$ gekommen:
$M(z)(y) = [mm] \{x | |x| \le \wurzel{1-z^2}, |z| > |y|, |x| \le \wurzel{1-y^2}, |z| \le |y| \}$ [/mm]

Ich werde den Gedanken jetzt mal weiter verfolgen, wenn damit auf dem Holzweg sein sollte, wäre ich hocherfreut, wenn mir das jemand mitteilen könnte ^^;

greetz

AT-Colt

        
Bezug
Volumenberechnung (3 Zylinder): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:31 Do 08.09.2005
Autor: AT-Colt

So, ich habe wie gesagt die Idee mit dem Minimum/Maximum von $|y|$ und $|z|$ weiterverfolgt und bin zu folgendem Schluss gekommen:

Für $|x|$ gilt letztendlich: $|x| [mm] \le \begin{cases} \wurzel{1-z^2}, & \mbox{für } |y| \le \bruch{1}{\wurzel{2}} \\ \wurzel{1-y^2}, & \mbox{für } |y| > \bruch{1}{\wurzel{2}} \end{cases}$ [/mm]
($|y| [mm] \le \bruch{1}{\wurzel{2}} \Rightarrow [/mm] |z| [mm] \ge \bruch{1}{\wurzel{2}}$) [/mm]

Nun berechnet man

[mm] $\integral_{-1}^{1} {\integral_{-\wurzel{1-z^2}}^{\wurzel{1-z^2}} {\wurzel{1-max\{|y|,|z|\}^2} dy} dz} [/mm] =$
[mm] $\integral_{-1}^{1} {(\integral_{-\wurzel{1-z^2}}^{-\bruch{1}{\wurzel{2}}}{\wurzel{1-y^2} dy} + \integral_{-\bruch{1}{\wurzel{2}}}^{\bruch{1}{\wurzel{2}}}{\wurzel{1-z^2} dy} + \integral_{\bruch{1}{\wurzel{2}}}^{\wurzel{1-z^2}}{\wurzel{1-y^2} dy}) dz} [/mm] =$
[mm] $2*\integral_{-1}^{1}{\integral_{\bruch{1}{\wurzel{2}}}^{\wurzel{1-z^2}} {\wurzel{1-y^2} dy} dz} [/mm] + [mm] \integral_{-1}^{1} {\wurzel{1-z^2}*\bruch{2}{\wurzel{2}} dz} [/mm] = [mm] \bruch{\wurzel{2}-1}{2}*\pi [/mm] + [mm] \bruch{5}{3}$ [/mm]

Weiss zufällig jemand, ob das Ergebnis stimmt?
Ich bin damit erstmal recht zufrieden, weil das ein kleineres Volumen ist als bei den zwei Zylindern, so falsch kann es also nicht sein ^^

greetz

AT-Colt

so, jetzt sollten keine Tippfehler mehr in den Formeln sein...


Bezug
        
Bezug
Volumenberechnung (3 Zylinder): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:48 Sa 10.09.2005
Autor: Stefan

Hallo AT-Colt!

Leider konnte dir bei deinem Problem in dem von dir angegebenen Fälligkeitszeitraum hier niemand weiterhelfen.

Vielleicht hast du ja beim nächsten Mal wieder mehr Glück! [kleeblatt]

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de