www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Volumenberechung Hyperbel
Volumenberechung Hyperbel < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenberechung Hyperbel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 So 13.11.2011
Autor: diolob

Aufgabe
Eine Seiltrommel entsteht durch Rotation einer rechtwinkligen Hyperbel um ihre Nebenachse. Der Kehlkreis hat den Radius r1=20 cm, für die Randkreise r2=35 cm. Was wiegt die Trommel, wenn Sie aus Eisen vom Artgewicht γ= 7,3 p/cm3 besteht [mm] \gamma [/mm] = [mm] 7,3p/cm^3 [/mm] ?

Ich hoffe Sie/ihr könnt mir helfen.

Mittlerweile hab ich herausgefunden, dass die Nebenachse die Achse ist, die längs durch den Rotationskörper geht ( und die Hauptachse die, die den Kehlkreis durchsticht? hoffe, dass das so richtig herum ist). Die Formel, mit der man anfangen muss, ist laut Formelsammlung   [mm] \frac{x^{2}}{a^{2}} [/mm] - [mm] \frac{y^{2}}{b^{2}} [/mm] = 1 .

Aus der Aufgabe lese ich heraus, dass es den Punkt (20|0)gibt, man also für x = 20 und für y = 0 einsetzt, und das man für a = 20 einsetzen muss. Als Ergebnis bekomme ich dann aber 1 = 1 heraus, was mir nicht so wirklich hilft.

Wenn ich erst mal das Volumen habe, würde ich das Gewicht sicher hinbekommen. Aber an dem Volumen beiße ich mir die Zähne aus. Mit einer Längenangabe wüsste ich wie, aber die gibt es ja leider nicht.

Vielen Dank für Ihre/ eure Antworten im Voraus !!!

Lg diolob

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:

http://www.onlinemathe.de/forum/Volumenberechnung-Hyperbel
http://www.matheboard.de/board.php?boardid=18

        
Bezug
Volumenberechung Hyperbel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 So 13.11.2011
Autor: chrisno


> Eine Seiltrommel entsteht durch Rotation einer

rechtwinkligen !

> Hyperbel um ihre Nebenachse. Der Kehlkreis
> hat den Radius r1=20 cm, für die Randkreise r2=35 cm. Was
> wiegt die Trommel, wenn Sie aus Eisen vom Artgewicht γ=
> 7,3 p/cm3 besteht [mm]\gamma[/mm] = [mm]7,3p/cm^3[/mm] ?
>  Ich hoffe Sie/ihr könnt mir helfen.
>  
> Mittlerweile hab ich herausgefunden, dass die Nebenachse
> die Achse ist, die längs durch den Rotationskörper geht (
> und die Hauptachse die, die den Kehlkreis durchsticht?
> hoffe, dass das so richtig herum ist). Die Formel, mit der
> man anfangen muss, ist laut Formelsammlung  
> [mm]\frac{x^{2}}{a^{2}}[/mm] - [mm]\frac{y^{2}}{b^{2}}[/mm] = 1 .

Für den besonderen Fall gilt $a = b$

> Aus der Aufgabe lese ich heraus, dass es den Punkt
> (20|0)gibt, man also für x = 20 und für y = 0 einsetzt,
> und das man für a = 20 einsetzen muss. Als Ergebnis
> bekomme ich dann aber 1 = 1 heraus, was mir nicht so
> wirklich hilft.

Da bist Du über das Ziel hinausgeschossen. Du hast a = 20 herausgefunden. Das brauchst Du um die Länge der Trommel zu berechnen.

>  
> Wenn ich erst mal das Volumen habe, würde ich das Gewicht
> sicher hinbekommen. Aber an dem Volumen beiße ich mir die
> Zähne aus. Mit einer Längenangabe wüsste ich wie, aber
> die gibt es ja leider nicht.

Volumen eines Rotationskörpers.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de