www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Volumenintegral
Volumenintegral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:00 So 09.06.2013
Autor: Trolli

Aufgabe
Bestimmen Sie [mm] $\int_B [/mm] f(x,y,z) dV$ für $f(x,y,z) = xyz$ und $B$ gegeben als der von den Ebenen $x = 0, y = 0, z = 0$ und $x + y + z = 1$ eingegrenzten Bereich.
Beschreiben Sie zunächst B und lösen Sie anschließend das Integral.

Hallo,
ich konnte leider 2 Wochen nicht zur Vorlesung und bekomme den Stoff erst morgen. Ich bräuchte eine Hilfestellung wie ich an diese Aufgabe rangehe.

Zuerst habe ich den Bereich beschrieben
[mm] $B=\{(x,y,z)\in\IR^3 | x+y+z=1 \}$ [/mm]

oder müsste es lauten
[mm] $B=\{(x,y,z)\in\IR^3 | 0\le x\le 1 \wedge 0\le y\le 1 \wedge 0\le z\le 1 \}$ [/mm]
da im Bereich alle Achsen bis zur 1 gehen?

Wie löse ich nun das Integral? Ist es einfach nur ein 3-fach Integral von $f(x,y,z)$ bei dem die Grenzen jeweils von 0 bis 1 laufen?

Danke für Tipps.

        
Bezug
Volumenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 So 09.06.2013
Autor: Salamence

Hallo!
> Bestimmen Sie [mm]\int_B f(x,y,z) dV[/mm] für [mm]f(x,y,z) = xyz[/mm] und [mm]B[/mm]
> gegeben als der von den Ebenen [mm]x = 0, y = 0, z = 0[/mm] und [mm]x + y + z = 1[/mm]
> eingegrenzten Bereich.
>  Beschreiben Sie zunächst B und lösen Sie anschließend
> das Integral.
>  Hallo,
>  ich konnte leider 2 Wochen nicht zur Vorlesung und bekomme
> den Stoff erst morgen. Ich bräuchte eine Hilfestellung wie
> ich an diese Aufgabe rangehe.
>  
> Zuerst habe ich den Bereich beschrieben
>  [mm]B=\{(x,y,z)\in\IR^3 | x+y+z=1 \}[/mm]
>  

Nein, das wäre einfach nur diese schräge Ebene.

> oder müsste es lauten
>  [mm]B=\{(x,y,z)\in\IR^3 | 0\le x\le 1 \wedge 0\le y\le 1 \wedge 0\le z\le 1 \}[/mm]
>  
> da im Bereich alle Achsen bis zur 1 gehen?
>  

Und das ist ein Würfel.

> Wie löse ich nun das Integral? Ist es einfach nur ein
> 3-fach Integral von [mm]f(x,y,z)[/mm] bei dem die Grenzen jeweils
> von 0 bis 1 laufen?

Zeichne dir das Ding doch einfach mal hin, ist ein Tetraeder. Dann sieht man da auch schon, wie man die Grenzen zu wählen hat. In der Tat startet man immer bei 0, aber die oberen Integrationsgrenzen müssen angepasst werden, die inneren sind variabel in Abhängigkeit der anderen Integrationsvariabeln, die Summe darf ja maximal 1 sein. Und dann kann man das Integral ganz gewöhnlich berechnen.

>  
> Danke für Tipps.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de