Volumenintegral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:00 So 09.06.2013 | Autor: | Trolli |
Aufgabe | Bestimmen Sie [mm] $\int_B [/mm] f(x,y,z) dV$ für $f(x,y,z) = xyz$ und $B$ gegeben als der von den Ebenen $x = 0, y = 0, z = 0$ und $x + y + z = 1$ eingegrenzten Bereich.
Beschreiben Sie zunächst B und lösen Sie anschließend das Integral. |
Hallo,
ich konnte leider 2 Wochen nicht zur Vorlesung und bekomme den Stoff erst morgen. Ich bräuchte eine Hilfestellung wie ich an diese Aufgabe rangehe.
Zuerst habe ich den Bereich beschrieben
[mm] $B=\{(x,y,z)\in\IR^3 | x+y+z=1 \}$
[/mm]
oder müsste es lauten
[mm] $B=\{(x,y,z)\in\IR^3 | 0\le x\le 1 \wedge 0\le y\le 1 \wedge 0\le z\le 1 \}$
[/mm]
da im Bereich alle Achsen bis zur 1 gehen?
Wie löse ich nun das Integral? Ist es einfach nur ein 3-fach Integral von $f(x,y,z)$ bei dem die Grenzen jeweils von 0 bis 1 laufen?
Danke für Tipps.
|
|
|
|
Hallo!
> Bestimmen Sie [mm]\int_B f(x,y,z) dV[/mm] für [mm]f(x,y,z) = xyz[/mm] und [mm]B[/mm]
> gegeben als der von den Ebenen [mm]x = 0, y = 0, z = 0[/mm] und [mm]x + y + z = 1[/mm]
> eingegrenzten Bereich.
> Beschreiben Sie zunächst B und lösen Sie anschließend
> das Integral.
> Hallo,
> ich konnte leider 2 Wochen nicht zur Vorlesung und bekomme
> den Stoff erst morgen. Ich bräuchte eine Hilfestellung wie
> ich an diese Aufgabe rangehe.
>
> Zuerst habe ich den Bereich beschrieben
> [mm]B=\{(x,y,z)\in\IR^3 | x+y+z=1 \}[/mm]
>
Nein, das wäre einfach nur diese schräge Ebene.
> oder müsste es lauten
> [mm]B=\{(x,y,z)\in\IR^3 | 0\le x\le 1 \wedge 0\le y\le 1 \wedge 0\le z\le 1 \}[/mm]
>
> da im Bereich alle Achsen bis zur 1 gehen?
>
Und das ist ein Würfel.
> Wie löse ich nun das Integral? Ist es einfach nur ein
> 3-fach Integral von [mm]f(x,y,z)[/mm] bei dem die Grenzen jeweils
> von 0 bis 1 laufen?
Zeichne dir das Ding doch einfach mal hin, ist ein Tetraeder. Dann sieht man da auch schon, wie man die Grenzen zu wählen hat. In der Tat startet man immer bei 0, aber die oberen Integrationsgrenzen müssen angepasst werden, die inneren sind variabel in Abhängigkeit der anderen Integrationsvariabeln, die Summe darf ja maximal 1 sein. Und dann kann man das Integral ganz gewöhnlich berechnen.
>
> Danke für Tipps.
|
|
|
|