www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Volumenintegral Kegel
Volumenintegral Kegel < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenintegral Kegel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 Fr 06.11.2015
Autor: Rebellismus

Aufgabe
Ein gerader Kegel in z-Richtung habe die Höhe h und als grundfläche einen kreis mit Radius R, vgl. Zeichnung.

a) Geben Sie eine Beschreibung der Menge der Punkte (x,y,z) [mm] \in \IR^3 [/mm] an, die zum Kegel gehören

b) Bestimmen Sie eine Koordinatentraansformation, um den Kegel zu parametrisieren. Wie lautet deren Funktionaldeterminante?

c) Bestimmen Sie das Volumen und die Höhe des Schwerpunkts des kegels

[Dateianhang nicht öffentlich]

Den Kegel hätte ich so beschrieben:

[mm] D=\vektor{R*cos\varphi \\ R*sin\varphi \\ -\bruch{R}{h}*z+R} [/mm]

mit [mm] \varphi\in[0;2\pi] [/mm] und z [mm] \in[0;h] [/mm]

wäre das schon aufgabe b?

ich verstehe den unterschied zwischen aufgabe a) und b) nicht ganz.

in a) soll ich meine Menge herleiten, die den Kegel beschreibt und in b) eine Parametriusierung, also auch eine menge.

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Volumenintegral Kegel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Fr 06.11.2015
Autor: leduart

Hallo
du hast die Oberfläche des Kegels versucht zu beschrieben , nicht wie verlangt das Innere
aber auch die Oberfläche ist falsch .Der Radius der Kreise ist doch nicht in jeder Höhe R?
dann bekommst du einen Zylinder! deine z Komponente ist R für z=0 und 0 für z=h
r=r(z) mal als Anfang.
und du willst alle Punkte Innerhalb, also hast du was wor r von 0 bis r geht
Gruss ledum

Bezug
                
Bezug
Volumenintegral Kegel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Fr 06.11.2015
Autor: Rebellismus

Ist das so nun richtig?

[mm] \phi=\vektor{r(z)*cos\varphi \\ r(z)*sin\varphi \\ z} [/mm]

[mm] r(z)=-\bruch{R}{h}*z+R [/mm]

mit [mm] \varphi\in[0;2\pi] [/mm] und z [mm] \in[0;h] [/mm]


Bezug
                        
Bezug
Volumenintegral Kegel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Fr 06.11.2015
Autor: leduart

Hallo
[mm] \Phi [/mm] ist eine Menge von Punkten im [mm] \IR^3 [/mm] wenn du dazuschreibest dass es die Menge der Punkte im [mm] \IR^3 [/mm]
du kannst [mm] \Phi [/mm] auch betrachten als Abbildung  von (/phi,z) nach (x,y,z)
als Oberfläche ist es jetzt ein Kegel mit Höhe h und Grundkreis R
nun nur noch das Innere dazunehmen.
Gruß ledum

Bezug
                                
Bezug
Volumenintegral Kegel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 Fr 06.11.2015
Autor: Rebellismus

ok dann löse ich zuerst aufgabe b)

[mm] \phi(r, \varphi, z)=\vektor{r(z)*cos\varphi \\ r(z)*sin\varphi \\ z} [/mm]

[mm] r(z)=-\bruch{R}{h}*z+R [/mm]

mit [mm] \varphi\in[0;2\pi] [/mm] und z [mm] \in[0;h] [/mm]

partielle Ableitungen:

[mm] \bruch{\partial \phi}{\partial r}=\vektor{0 \\ 0 \\ 0} [/mm]

[mm] \bruch{\partial \phi}{\partial \varphi}=\vektor{-r(z)*sin\varphi \\ r(z)*cos\varphi \\ 0} [/mm]

[mm] \bruch{\partial \phi}{\partial z}=\vektor{-\bruch{R}{h}*cos\varphi \\ -\bruch{R}{h}*sin\varphi \\ 1} [/mm]


Dadruch erhalte ich die Jacobi-matrix:

[mm] D\phi(r, \varphi, z)=\pmat{ 0 & -r(z)*sin\varphi & -\bruch{R}{h}*cos\varphi \\ 0 & r(z)*cos\varphi & -\bruch{R}{h}*sin\varphi \\0 & 0 & 1 } [/mm]

Die Funktionaldeterminante ist:

[mm] detD\phi(r, \varphi, [/mm] z)=0

stimmt die Lösung?

Bezug
                                        
Bezug
Volumenintegral Kegel: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Fr 06.11.2015
Autor: Event_Horizon

Hallo!

zu Punkt a)

im Prinzip hast du die Lösung schon, aber man kann das so schön mathematisch ausdrücken:

[mm] M=\{\vec{x}\in\IR^3|\vec{x}=...; \phi\in[...];...\} [/mm]


Zu b)

Denk mal nach. Der Betrag der Determinante taucht als Faktor im Integral auf. Dann ist das Integral 0...


Die Jacobi-Matrix wird nicht aus der Parametrisierung deiner Figur berechnet, sondern aus der generellen Umrechnung von polarkoordinaten in karthesische:


[mm] \vektor{x\\y\\z}=\vektor{r\cos\phi\\r\sin\phi\\z} [/mm]

Also: Leite den rechten Vektor ab. (Zur Kontrolle: Die Determinante ist $r$ )

Bezug
                                                
Bezug
Volumenintegral Kegel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 Fr 06.11.2015
Autor: Rebellismus

Hallo!

> Denk mal nach. Der Betrag der Determinante taucht als
> Faktor im Integral auf. Dann ist das Integral 0...

Ja das fand ich auch komisch, aber ich wusste halt nicht wo der fehler war


> Die Jacobi-Matrix wird nicht aus der Parametrisierung
> deiner Figur berechnet, sondern aus der generellen
> Umrechnung von polarkoordinaten in karthesische:
>
> [mm]\vektor{x\\y\\z}=\vektor{r\cos\phi\\r\sin\phi\\z}[/mm]

ich bin nicht sicher ob ich diesen Satz verstanden habe. Kannst du den Satz vielleicht nochmal anders formulieren?

ich transformiere die variabeln x,y,z in den Variablen r, [mm] \varphi [/mm] und z um.

Bei der Ableitung betrachte ich die transformierten variablen IMMER als variablen, egal ob r, [mm] \varphi [/mm] und z eine lineare, quadratische oder eine Funktion n grades ist, bei der ableitung betrachte ich diese immer als variable und nicht als funktion?

Bezug
                                                        
Bezug
Volumenintegral Kegel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Fr 06.11.2015
Autor: Event_Horizon

Hallo!

Die  Umrechnung von beliebigen  Zylinderkoordinaten [mm] \vektor{r\\ \varphi \\ z} [/mm] in karthesische [mm] \vektor{x\\y\\z} [/mm] erfolgt über


$ [mm] \vektor{x\\y\\z}=\vektor{r\cos\phi\\r\sin\phi\\z} [/mm] $

Daraus berechnest du dir durch Ableiten nach $r_$, [mm] \varphi [/mm] und $z_$ die Jacobi-matrix, daraus dann die Determinante, die eben $r_$ ist.

Und das hat NICHTS mit deinem Kegel zu tun, sondern ausschließlich mit den Zylinderkoordinaten. Denn die Determinante liefert einen allgemeingültigen Umrechnungsfaktor, um das Volumen eines kleinen Flächenstücks, definiert durch [mm] dr\,d\varphi\,dz [/mm] zu berechnen.

Die Parametrisierung des Kegels spielt erst danach, bei den Integralgrenzen wieder eine Rolle.



Anschaulich: Schneide eine dünne Scheibe von einer Toilettenpapier-Rolle, und schneide die Scheibe anschließend wie eine Pizza. Die entstehenden Papierstückchen haben alle die gleiche Dicke dr und Höhe dz, aber ihre Länge ist trotz gleichem Schnittwinkel [mm] d\varphi [/mm] unterschiedlich. Die äußeren sind länger. Genau genommen haben sie die Länge [mm] r*d\varphi [/mm] und so das Volumen [mm] r*d\varphi*dr*dz. [/mm] Dieses r hast du dir aus der Jacobi-Determinante berechnet.
Das Gesamtvolumen der Papierrolle wird dann über ein Integral berechnet, und erst da steckst du die Parametrisierung (Höhe, Innen- und Außenradius) rein.



Bezug
        
Bezug
Volumenintegral Kegel: aufgabe c)
Status: (Frage) beantwortet Status 
Datum: 21:28 Fr 06.11.2015
Autor: Rebellismus

Meines Wissens nach muss ich hier folgenden integral lösen:

[mm] \integral_{0}^{h}\integral_{0}^{2\pi}\integral_{0}^{R}{r dr d\varphi dz} [/mm]

r ist das ergebnis der funktionaldeterminante.

Ist das integral richtig?

Ist es egal in welcher reihenfolge ich integriere ? oder liegt hier ein Normalbereich vor?
der radius hängt ja von der z achse ab. Das wird glaube ich bei meinem integral nicht berücksichtigt. wie mache ich das?

Hier liegt ein Normalbereich vor richtig?

Bezug
                
Bezug
Volumenintegral Kegel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Fr 06.11.2015
Autor: Event_Horizon

Hallo!

Das ist richtig so, wenngleich nicht völlig klar wird, welche Integralgrenzen zu welcher Variablen führen. (Du folgst der Konvention von innen nach außen)

Zum Radius: Du hast ja bereits r(z) irgendwo angegeben. Schreib stattdessen besser mal R(z), weil das sonst zu Verwirrung beim Integrieren führen kann. Damit ist das Integral über r:

[mm] \int_0^{R(z)}r\,dr=\int_0^{R-R*z/H}r\,dr=R-R*z/H [/mm]


Das Ergebnis von z abhängig. Daraus ergibt sich, daß du die Integration über z erst danach ausführen kannst. Wann du über [mm] \varphi [/mm] integrierst, ist dagegen völlig egal.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de