www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Von Parameter zur Normalform
Von Parameter zur Normalform < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Von Parameter zur Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 Mo 29.10.2007
Autor: Beliar

Aufgabe
Bilde die Normalform von:
[mm] E:\vec{x}=(1;0;1)+\lambda(-1;3:1)+\mu(0;1;0) [/mm]

Hallo, ich möchte die oben genannte in die Normalform bringen, könnte jemand mal schauen ob das richtig ist,Danke
habe erstmal ein Gleichungssystem erstellt (heisst das System auch LGS ?)
-1(n1)+3(n2)+1(n3)=0
      +1(n2)      =0
jetzt bekomme ich für n1=1 ; n2=0 ; n3=1
so meine Frage ist das richtig, wenn die gleichen werte für n herauskommen in diesem Fall für n1 und n3?
Danke für jeden tip
Beliar

        
Bezug
Von Parameter zur Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Mo 29.10.2007
Autor: Somebody


> Bilde die Normalform von:
>  [mm]E:\vec{x}=(1;0;1)+\lambda(-1;3:1)+\mu(0;1;0)[/mm]
>  Hallo, ich möchte die oben genannte in die Normalform
> bringen, könnte jemand mal schauen ob das richtig
> ist,Danke
>  habe erstmal ein Gleichungssystem erstellt (heisst das
> System auch LGS ?)

"LGS" ist eine Abkürzung für "lineares Gleichungssystem". Dein untenstehendes Gleichungssystem für die zu bestimmenden drei Koordinaten (Komponenten) [mm] $n_1,n_2$ [/mm] und [mm] $n_3$ [/mm] eines Normalenvektors [mm] $\vec{n}$ [/mm] der gegebenen Ebene $E$ ist in der Tat ein System von zwei linearen Gleichungen in den drei Variablen [mm] $n_{1,2,3}$: [/mm] also ein lineares Gleichungssystem (LGS).

>  -1(n1)+3(n2)+1(n3)=0
>        +1(n2)      =0
>  jetzt bekomme ich für n1=1 ; n2=0 ; n3=1

[ok] Dies ist jedenfalls eine (der unendlich vielen) Lösungen dieses (homogen-)linearen Gleichungssystems.

>  so meine Frage ist das richtig, wenn die gleichen werte
> für n herauskommen in diesem Fall für n1 und n3?

Was stört Dich daran? [mm] $n_1$ [/mm] und [mm] $n_3$ [/mm] sind ja verschiedene Koordinaten des gesuchten Normalenvektors [mm] $\vec{n}$ [/mm] der gegebenen Ebene. Stören sollte Dich allenfalls, wenn [mm] $n_1=n_2=n_3=0$ [/mm] (oder sowohl [mm] $n_1=1$ [/mm] als auch [mm] $n_1=0$) [/mm] wäre.

Du bist also meiner Meinung nach auf dem richtigen Weg. Du hast einen Normalenvektor

[mm]\vec{n}=\vektor{1\\0\\1}[/mm]


der gegebenen Ebene $E$ richtig bestimmt. - Weiter so...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de